Electromagnetic Field Theory for Engineers
and Physicists






Gunther Lehner

Electromagnetic Field
Theory for Engineers
and Physicists

Translated by Matt Horrer

@ Springer



Prof. Dr.rer.nat. Giinther Lehner (em.)
Universitat Stuttgart

Fak.05 Informatik, Elektrotechnik
und Informationstechnik
Pfaffenwaldring 47

70569 Stuttgart

Translator

Matt Horrer
Raleigh

North Carolina
USA
mhorrer@ieee.org

ISBN 978-3-540-76305-5 e-ISBN 978-3-540-76306-2
DOI 10.1007/978-3-540-76306-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009943738

(© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



The Author’s Preface

This book deals with the fundamental principles of electrodynamics, i .e. the theory
of electromagnetic fields as given by Maxwell's equations. It is an outgrowth from
the lectures, which the author has been giving to the students of electrical
engineering at the University of Stuttgart, Germany, for approximately a quarter of
a century. For the textbook, the contents of the lectures have been supplemented by
a chapter on numerical methods for the solution of boundary and initial value
problems, which provides a rough first survey over the methods available only,
without going into details. Furthermore, there are several appendices devoted to
some more special topics, as among others to the problem of the possibility of an
extremely small but nonzero restmass of the photon, which would lead to Proca’s
equations, a modified version of Maxwell’s equations; to the important question of
eventually existing magnetic monopoles; to the deeper meaning of the
electromagnetic potentials in view of quantum mechanics and the Bohm-
Aharonov-effects. The last appendix covers a brief survey of special relativity,
because this, in principle, is an essential part of electrodynamics, which is
inevitably needed for its real understanding.

The treatment is based on Maxwell’s equations from the beginning. They are
described and explained in Chapter 1. The following chapters are devoted to
electrostatics; to the important mathematical tools of electromagnetic field theory
(method of separation of variables using cartesian coordinates, cylindrical
coordinates, and spherical coordinates; conformal mapping for plane problems); to
stationary current density fields; to magnetostatics; to quasi stationary time
dependent problems as field-diffusion, skin effect etc.; and finally electromagnetic
waves and dipole radiation. Everything in these chapters is derived from Maxwell's
equations, except the additionally necessary assumptions characterizing various
media, their conductivity, polarizability, and magnetizability.

The basic concepts of vector analysis are also developed from the beginning
together with Maxwell’s equations. The divergence (div) is defined as the small
volume limit of the surface integral (flux) of a vector field and the rotation (curl) as
small surface limits of three line integrals (circulations) of a vector field. These
definitions immediately clarify the plausible meaning of both of these operators of
vector analysis. The divergence being the volume density of sources or sinks, the
rotation being the three dimensional surface density of circulation. The integral
theorems of Gauss and Stokes are immediately plausible consequences of these
definitions also. This procedure provides an easy and well comprehensible access
to the realm of vector analysis. It also very clearly demonstrates the physical
meaning of Maxwell’s equations. Helmholtz’s theorem (presented in one of the
appendices) teaches us that each vector field is completely defined by its
divergence and its rotation. So it is obvious that we need four equations to describe
electric and magnetic fields, two for their sources and sinks and two for their
circulations. Thus, Maxwell’s equations, often considered to be almost
incomprehensible, are hoped to become really plausible.



vi The Author’s Preface

The different chapters contain a variety of analytical solutions of boundary
and initial value problems. It is quite often claimed that this is no longer of interest
and that such problems nowadays are usually treated numerically by computers.
The author cannot share this opinion. People trying to solve electrodynamical
boundary and initial value problems numerically, without having studied and
understood the theoretical background and not having seen examples of a variety
of fields, often if not mostly obtain faulty results. Having little or no feeling for the
matter, they may believe in the correctness of their results. It is not at all easy to test
if the solutions are really correct. The availability of many analytical solutions is a
very valuable and even indispensable tool for testing numerical programs. It is
always advisable to solve similar problems analytically when doing numerical
work and to test the numerical methods by comparing the results.

Initially conceived for students of engineering and physics, the textbook
turned out to be useful for professionally working engineers and physicists also.
That is why six editions of the original German version of the book have appeared
already. The author together with the translator hopes that the present English
translation will be as useful for its readers.

Stuttgart, 2009 Gtinther Lehner
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List of Symbols

General Symbols

(For example }") refers to a function f'which is derived via an
integral transform (Fourier, Hankel, Laplace transform)

Proportionality sign (for example F ~ m)

(For example z*, w*) refers to the complex conjugate of a
quantity (e.g. for z, w), or to a dual quantity (e.g. A* to A, ¢* to

0)

A perpendicular component if used as an index

A tangential component if used as an index

The circle indicates that the integral is to be taken over a closed
contour (line integral) or over a closed surface (surface integral).

V , Ve Nabla symbol “del” and “del dot” operator
. . . 0 0 0
(del in Cartesian coordinates: <§’ 3y E> )
Vea Divergence of the vector a
Vxa Circulation of the vector a (curl)
Viz=A Laplace operator
A -
Quantum mechanical operators, e.g. H.
Used to indicate multiplication of scalar quantities
. Scalar multiplication of vectors, scalar product, dot product
X Vector product of two vector quantities
ab Dyadic product. It is an operator whose result is a tensor matrix

with elements: (ab);, = (a;b;)
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Latin Letters

List of Symbols

Latin Letters

a,4a,,a,4a; | Avector and its cartesian components a,, a,, a,

a a (Surface) area, magnitude and vector (where the are caould be
confused with the vector potential)

A, A (Surface) area magnitude and vector

A Magnetic vector potential

A* Electric vector potential (in analogy to the magnetic vector
potential).

arg(z) Argument of a complex number (phase angle)

ber(), bei()

Kelvin’s function

Magnetic flux density, magnetic induction, B-field

B, Amplitude of the magnetic field of an electromagnetic wave
B, Normal component of B

B, Tangential component of B

c Speed of light in vacuum

cG Group velocity of light

cpp, Phase velocity of light

Cit Influence coefficients

Cik Capacitance coefficient

C Capacitance

c’ Capacitance per unit length

cos (), Cosine and hyperbolic cosine function
cosh()

D Displacement field (electric)

D Normal component of D




List of Symbols ~ Latin Letters

Xvii

D, Tangential component of D

dA, da Differential of a surface element (vector quantity)
dA, da Magnitude of the vector of the surface element

0 0 . o .

FrreE Partial derivative with respect to t, x, ...

% Normal component of the gradient of the function ¢
dt Differential of time
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1 Maxwell’s Equations

1.1 Introduction

In this book, we describe the principles which govern electric and magnetic or
electromagnetic fields and waves. This area of knowledge, frequently referred to as
Electromagnetism, has a long history and is associated with many famous names
among which Maxwell has a prominent place. Maxwell was the one who, in the
nineteenth century, gave electromagnetism its final form, by fixing an
inconsistency and summarizing the then voluminous material into few equations,
through which everything else can be derived. These equations are called
Maxwell’s equations. They form the foundation of the so-called Classical
Electromagnetism. The first chapter of this book shall serve to introduce these
equations.

We have to emphasize, however, that Classical Electromagnetism, which is
mostly expressed through Maxwell’s equations is not really complete. The 20th
century brought insights that have caused extensions in two different directions.
The first is related to Albert Einstein and leads to the Theory of Relativity.
Application of this fundamental idea is intimately related, but not limited to
electromagnetism. One could even go as far as stating that Classical
Electromagnetism can only be understood, and its full importance recognized,
through the perspective of the Theory of Relativity. Later we will discuss, that
electromagnetic fields propagate in the form of waves. The thereby created
electromagnetic waves manifest themselves in manifold ways: as radio waves, heat
radiation, visible light, x-rays, gamma rays, etc. In vacuum the velocity of this
propagation is the speed of light in vacuum (c~3-108m/s). The Theory of
Relativity elevates the speed of light to a quantity that is fundamental for the
structure of space and time and thus making it a fundamental constant of nature.
Besides this, electromagnetic waves have also brought another important
knowledge. Light consists, as we have known since Planck, of individual particles
called photons. Together with other fundamental discoveries, which we do not
want to discuss here, this has lead to Quantum Electrodynamics. This theory treats
electromagnetic fields as what they, according to the current state of knowledge,
really are: namely waves and particles simultaneously. That is to say, it describes
how they are created, destroyed, how they interact with other matter, etc.

Of these three closely related theories — Classical Electromagnetism, Special
Relativity, and quantum-electrodynamics — we will only deal with classical
electrodynamics. Nevertheless, occasionally it will be necessary to mention facts
that go beyond it, and to clarify a situation may require use of elements from other
theories, for example the Theory of Relativity. This restriction is purely of
didactical nature and certainly not based on the idea that only classical
electrodynamics is of practical value. The opposite would be true. To mention just
a few examples: the characteristics and behavior of electrons in metals (band

G. Lehner, Electromagnetic Field Theory for Engineers and Physicists,
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model), behavior of semiconductors and consequently that of transistors, the
processes in photoelectric cells, the achievements of laser technology, effects —
equally as strange as important — such as superconductivity, etc., can only be
discussed and understood by means of quantum theory.

1.2 Charge and Coulomb’s Law

In the following section we will derive Maxwell’s equations. We will do this in an
abbreviated form, but roughly following the historical derivation. We will begin by
considering an historically old experience, which most of us have experienced
many times. If certain objects are rubbed and then separated, they exert a force on
each other. Rubbing changes these objects. They are transformed into a state which
we will call electric or electrically charged — whatever that may mean. To learn
about those forces, we conduct the following thought experiment.

We start by choosing three different objects (A, B, C), which were electrically
charged by rubbing them. There are now the following possibilities:

1. A and B attract each other

2. A and C attract each other

What would be the force between B and C? Is the answer to this question trivial?
Can we make a prediction? In any case, the experiment provides us with the
answer:

3. B and C repel each other

Is this surprising? Is it by chance? No, it is not chance, but a law of nature. We can
repeat this experiment infinitely often and always get the same result: If A attracts
both B and C, then B and C repel each other. There are other possibilities:

1. A and B repel each other

2. A and C repel each other
3. B and C repel each other

1. A and B attract each other
2. A and C repel each other
3. B and C attract each other

This result may be so familiar to us that we take it for granted and it may appear
trivial, but this is not so. Were we to instead deal with gravitational forces or
nuclear forces, our experiment would exhibit different results. Strictly speaking,
our result is correct only under the implicit assumption that the electric force is
greater than any other kind of potentially superimposed force, like gravitational or
nuclear forces. This restriction is very important in natural behavior. The nucleus
of an atom consists partly of particles that repel each other. The nucleus would
burst apart if there were not attracting forces that more than compensate the
repelling electric force. Gravitation, while an attracting force, is too weak to
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prevent destruction of the nucleus. One needs to remain conscious of this fact
when, in the following, we make statements about electric forces.
We can summarize the experience with electrically charged objects in the
following way:
1. There are two sorts of electrical charge, which we term positive and
negative charges.

2. Like charges repel, while opposite charges attract each other

These qualitative statements are, however, insufficient. At the end of the day, we
want to formulate physical laws quantitatively. We will utilize the following
experimental result: To begin, one can measure the force between charged objects,
for example, by utilizing springs. We measure the force of A on B, and A on C.
Next, we combine B and C, and then measure the force that A exerts on the
combined object B+C. We will find that this force is the sum of the individual
forces of the previous experiment.

This is a principal realization, whose consequence is far reaching. For now,
we simply want to justify the right to expand on our qualitative statements on
charge into a more quantitative one based on the magnitude of charge. We will call
the charge quantity Q. The question of units with which to express Q shall be left
for later. For now, assume we have already defined the unit and found a method to
measure the charge quantity Q in this unit. This allows us to measure charges Q;
and Q, and so the force between the two charges, which in turn, enables us to
formulate Coulomb’s law:

1. The force between two charges Q; and O, is proportional to both Q; and

0, and also inversely proportional to the square of the distance 77,
between them
F~ Q12Q2 (1.1)
2

2. The axis of the force lies on the direct line between the charges; it is
repelling for like charges, and attractive for opposite charges.

The fact that F;, being proportional to 1/r?, is of great significance i.e. it is an
inverse square law.. We will come back to discuss the consequences of this law
later. This property is shared between electric and gravitational forces.

Forces are vector quantities. An arbitrary force F is therefore determined by
three components, for example in a Cartesian coordinate system:

F = (F, F, F) (1.2)
Suppose there is a charge Q; at point r,

r, = XLy, (1.3)
and a charge Q, at point r,

ry = (X3, V9, 2Z9) (1.4)
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then we can write Coulomb’s law, combining all those statements, in the following
way:

010, -1y

F' = —_
12 41'580 |r27r1|3

(1.5)

where F,, is the force that O, exerts on O, . Conversely, the force that O, exerts
on Q, is:

90, ri-n,

F,, =
21 41-580 |r17r2|3

(1.6)

It follows from these relations that
F,+F, =0 (1.7)

Here, 4ng, is just an arbitrary proportionality constant. It is arbitrary because we
still have to select the units for force, charge, and length. We will later make a
selection, which in turn uniquely defines the physical constant g, the so-called
permittivity or dielectric constant in free space. Currently we have created a fairly
simple world, which consists only of charges in an otherwise empty space
(vacuum).

1.3 Electric Field Strength E and Displacement Field D

A single charge in the otherwise empty space causes that space to change. A
second charge brought into this space experiences a force at every point of that
space. This force is expressed by Coulomb’s law and varies from point to point. At
this stage it will be beneficial to introduce the concept of the electric field. It is the
quintessence of all possible effects by such forces at the different locations of this
space, which become obvious only after we place a charge at a particular point.
The term field, more generally, refers to a quantity of any kind that is a
function of space (and possibly of time). This book will also deal with various
kinds of fields.
The electric field strength is described by a vector quantity represented by the
symbol E. It is defined as the force in the field per unit charge.

E == (1.8)

This definition makes sense because the force, according to Coulomb’s law, is
proportional to Q and thus E is independent on the (test) charge.

Furthermore, Coulomb’s law states that a charge O, at location r;, at an
arbitrary field point r produces the following electric field:

0, r-r,
E = =1
(l‘ 47'580|r_r1|3

(1.9)
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For reasons which we will be able to understand only later, we will now define
only for vacuum, the vector quantity of the electric displacement Field D in the
following way:

D = ¢E (1.10)

1.4 Electric Flux

By means of D and Fig. 1.1 we define the electric flux:
Q=[DedA =] D,dA (1.11)
A 4

D, is the component of D that is perpendicular (normal) to the surface element
dA . The dot indicates a scalar or dot product of two vectors. The vector dA is
always perpendicular to the surface element and its magnitude |dA| equals the
value of its surface area. That is:

|dA| = dA (1.12)

The term electric flux is based on the analogy to a moving fluid, where the velocity
is:

v(r, t)

If the fluid is incompressible, then the amount of fluid that moves through a surface
A per unit of time can be expressed as

jAVOdA

This is called flux through the surface. This analogy is frequently used for the
definition of all kinds of fluxes. We now want to ponder about the question, how
much electric flux passes through an arbitrary closed surface if there are charges
somewhere, that is to say, charges can be inside or outside the space enclosed by
our surface.

The answer to this question is rather easy if we limit ourselves to the area of a
sphere (radius ry), with a charge Q; is at its center. (For a closed surface let dA be
always oriented outwardly, see Fig. 1.2.)

dA

Fig. 1.1
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dA

Fig. 1.2

9,
2

4Tcr0

— — _ Ql 2

Q= §A D, dA = §AdA— P 4nrg= 0, (1.13)
Use was made of the fact that for symmetry reasons D, = D = |D|. So, in this
case, one finds that the flux is the charge itself. How would this result change if we
changed the spherical surface into an arbitrary one? To formally solve the integral
of the flux (1.11) could become very difficult. A trick, however, allows to reduce
the new problem into the already solved one. We surround the charge
simultaneously by an arbitrarily large surface of a sphere 4;, centered at the
location of the charge O, and an arbitrary surface 4, (see Fig. 1.3). As a result, for
every small cone we find the following relation:

D, edA, = D,edA,
This is a consequence of:

DedA = D dd,, (1.14)

where dA; is the component of JA parallel to D and the fact that although D
decreases with 1/72 on one hand, on the other, dA,, increases with 72, given that r

A (sphere) /‘

e

dA,

dA,

Fig. 1.3
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is the distance from the charge. This means, that independently of the shape of 4,
the same flux passes through it as passes through the surface of the sphere 4;.

Let us next study the flux through a closed surface where the charge is outside of it.
The same arguments as before shall serve to analyze the situation in Fig. 1.4, and to
show that the flux through this closed surface will vanish entirely. Every flux
entering the surface will exit it as well. In summary one writes:

Q = { 0 } ifQ, is { inside } of the closed surface (1.15)
0 outside

What happens if there are multiple charges in our space? We start with the
statement that in order to determine the total force caused by all charges
simultaneously, it is permissible to add the forces exerted by those charges. As
forces are vectors, this addition is a vectorial addition. Addition is also permitted
for the electric field. This only seemingly trivial fact has received its own term:

Superposition principle, which applies to the electric field

We have made use of this principle before, when we introduced charge. We must
emphasize: The superposition principle does not state that it is allowed to add
forces as vectors. This fact is a basic principle of mechanics and is the reason for
the usefulness of vectors altogether. The crucial point is that the force between
charges is independent of the existence of other charges in its vicinity, i.e., is not
changed by those other charges. This, however, is highly nontrivial and perhaps not
even true under all circumstances (it may not apply, for instance, when we deal
with very strong fields).

The superposition principle allows us to write an expression for n charges Q;
at the locations r;

n n Qi
En = 287 2 i
i=1 i=1 0

l‘—l'i

) (1.16)

The flux Q through any arbitrary closed surface is thus

Fig. 1.4
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Fig. 1.5

Q=§DedA=§3D,;edA = T§DedA = Y O,
enclosed

finally
Q= 3 0l (1.17)

enclosed

Q equals the sum of all charges inside this closed surface. Instead of point charges,
we are able to study continuously distributed charges in some space. This requires
the definition of the volume charge density p(r, ¢) . It is defined as the differential
quotient

p= lim 99 (1.18)
di—»0 dt

with dQ being the charge contained in the volume element dt . The total charge in
a volume V is thus

0 = ijdr . (1.19)

This, on the other hand, equals the electric flux that passes through the surface of
this volume, and enables us to write for any volume (see Fig. 1.5)

{;AD-dA = ijdr ) (1.20)

With this, we found a fundamental relation. It is the integral form of one of the (in
total four) Maxwell’s equations. Before discussing it in more detail, we will need to
introduce several other terms and concepts.

1.5 Divergence of a Vector Field and Gauss’ Integral Theorem

Equation (1.20) is applicable for any volume, in particular for an infinitesimally
small one. This allows one to rewrite

IVpdT =plV = SEADOdA

or
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p = lim M (1.21)
V=0 V
This is a very important relation in vector analysis. The divergence div a or Vea
for an arbitrary vector field a(r) is defined as the limit:
$ aedA

Vea = lim 4 —— | (1.22)
V—0 V

Comparison of (1.21) with (1.22) reveals

[VeD = p . (1.29

This is the equivalent of (1.20), the differential form of Maxwell’s equation. We
will verify that it is in fact a differential equation.

The way we derived this equation also illustrates its significance. We use our
previous example of the incompressible fluid where j;AV o dA . Therefore, Vev
can only be non-zero, if fluid flows out of the volume element (source), or flows
into it (sink). To apply this to our field lines E or D, we can say that they can only
originate at locations where electric charges are (Fig. 1.6).

Electric charges are sources or sinks of the electric field

Divergence is a mathematical term suited for this fact and is a measure of the
strength of the source or sink.

At this point one should be alerted to what our conclusions are based on. They
are a consequence of Coulomb’s law, or more precisely of the 1/r? dependency in
it. Would this dependency be any different, the relation between D, 4, and Q would
not hold: {aD e dA # Q and VeD = p. In view of the streaming fluid and the 1/72
dependency, however, we find our results to be rather trivial. A water fountain
idealized as a point source pours water evenly in all directions and produces a
purely radial flux field, with v, oc (1/r%). The flux §AV -dA which does not
enclose a source has to be zero. On the other hand, we have to note that any, even
the slightest deviation from Coulomb’s law, would be significant and would result

Fig. 1.6
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Fig. 1.7

in a quantitatively different electrodynamics. For that reason, it was interesting and
necessary to verify by measurements, whether any deviation could be found. Up to
now, not even the most precise measurements have found any deviation. It cannot
be excluded, however, that such deviations might be found in the future when even
more precise measurements become available. In such a case, this will require that
this theory be modified at least in parts. These are areas of concern, which reach far
into the domain of Quantum Mechanics and Relativity. They are related to the
question whether the rest mass of photons is actually zero or not. Appendix A.1
will deal with this topic in more detail.

The above definition of the divergence leads to a for us very important
theorem. We want to integrate Vea, the divergence of a vector field a over the
volume shown in Fig. 1.7. We use the following fact:

. faedA

jVVoadr = Z{ lim }Vi

1

V>0 ¥,

This means to separate the macroscopic volume into many microscopic volume
elements and then calculate the divergence for each such micro element by taking
the limit of V approaching zero. In this case, all the surface integrals inside cancel
because each surface occurs twice, each time with a different sign, as the normal
vector for each of those two surface elements has the opposite direction. What
remains is the surface integral over the outer surface of the macroscopic volume,
ie.

jVV eadt = §Aa o dA (1.24)

This is Gauss’ Integral Theorem.
This equation formally establishes the relation between (1.20) and (1.23).
Using (1.24) in (1.20) gives:
DedA = dt = | VeDdr.
§Dedr = [pd ~ | VoD
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ay(x+dx)

|0
\

Fig. 1.8

Because this has to be true for an arbitrary volume, the integrands have to be equal
to each other, i.e.

VeD =p.
This means that (1.23) follows from (1.20). Conversely, from (1.23) follows
VeDdt = dt = ¢ DedA
70 - s - pe

and hence (1.20). In conclusion, we realize that Gauss’ integral theorem provides
the rigorous formal proof to our previous plausibility arguments

The definition of the divergence in (1.22) is didactically advantageous, but
impractical for actual computations. Therefore, we will calculate V e a in the
Cartesian components of a :

a = (a,(x,y,2),a,x,y,2),a,x,y,z)) (1.25)
We write the related surface integral and take the limit of its volume as it goes to
zero (see Fig. 1.8),

. paedA
Vea = lim
V—>0 V

. 1
lim —_—
dx,dy,dz— 0 dxdydz

{[ax(x +tdx)—a(x)]dydz + [a,(y +dy) —a,(y)]dxdz

+ [a,(z +dz) —a_(z)]dxdy }

l:ax(x) +%xdx—ax(x)dedz+ [...+...—...]1dxdz + [-...]dxdy

= lim
dx, dy,dz — 0 dxdydz
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0 tedvdz + 2% dxdvdz + " avdyd
_ llm aX}/Z@X}/Z&)CyZ

dx, dy,dz -0 dxdydz

Oa, Oa, Oa,
= vy
ox 0Oy oz

that is

Oa. Oa, Oa
Vea= "+ 7+~ (1.26)
ox 0oy Oz
The divergence is a scalar quantity, formally expressed as the scalar product (dot
product) of the vector operator V (Nabla or “del”), for Cartesian coordinates with

the vector a, and using the Cartesian unity vectors e,, e,, €, as
V= 0 0 0 0 0 0

Ll 9 el teltrel .
oyl Yax 95y %

(1.27)

1.6 Work and the Electric Field

A charge O within the reach of an electric field experiences the force QE and
moves, if not held fixed in place. The field performs work on the charge.
Conversely, to move the charge against the field requires one to do work.

If we move the charge from the starting point P, along the contour C; to an
endpoint Pg, (Fig. 1.9), then the total work we have to do is given by

W, =-[Feds = -Q[Eeds. (1.28)
C, C,
This is because dW for the path element ds is
dWw, = -Feds. (1.29)
We could have moved the charge along path C, with the result:
W,=—[Feds = -0 [Eeds. (1.30)
C2 CZ

Fig. 1.9
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Fig. 1.10

Initially, we will only deal with time-independent fields. Suppose the results ¥,
and W, would be different. We then could take advantage of this to build a
perpetuum mobile (1st kind). Suppose, for instance, W, > W, then it would be
possible to move the charge from P, to P via path C; and then back to P, via path
C,. We would need to invest the work /¥, but gain work W, on the way back.
Overall, the work of the closed loop would be W, — W, > 0. Repeating this process
would manifest itself as a perpetuum mobile. Of course, we have reasons to assume
that this is impossible. The theorem of conservation of energy requires to state that:

W, =W,. (1.31)
or

[Eeds— [Eeds =0 . (1.32)

Cl C2

Consequently, the work over any closed contour is

This important relation was derived without using the knowledge about electric
fields we have gained so far. We need to verify that the electric fields, in fact, meet
this requirement. Again, we are currently studying time-independent fields only.
Time dependency will come in later, and we will find that (1.33) is not applicable
in such a case. Nevertheless, if (1.33) applies to a single point charge, it also
applies to an arbitrary distribution of charges at rest. The reason for this is the
superposition principle. It is therefore sufficient to prove (1.33) for a point charge.

Before starting our proof, we will investigate some simple properties of line
integrals over closed curves. Fig. 1.10 shows a closed curve C, which is separated
into two closed curves C; and C, by inserting a line. We get:

§>Caoa’s = jCIaOds+jC2a0ds.

Notice that the two newly added path elements identically cancel. This kind of
subdivision can be repeated by individually subdividing C; and C,, respectively,
and so on. If we now study the field of a point charge, we can start with any closed
contour. We can reduce the integral {)E e ds to integrals over the kind shown in
Fig. 1.11. For this case we write :
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Fig. 1.11

fEeds = (1, +1,
1

2

P P
[+ 1)E-ds = 0.
Py Py
On the paths (arcs) from P, to P5 and P4 to Py, E is perpendicular to ds
P P
I3E0ds +] 'Eeds =0.
P, Py

On the other two paths from P, to P, and P5 to P,4, on the other hand, E and ds are
parallel and anti-parallel, respectively. This means that

P P P, P,
IP?EOds = ijE ds = [, Eds = [, ~Eeds.

This finalizes the proof. Unfortunately the perpetuum mobile is not a feasible
option. Relation (1.33) will prove to be far-reaching. First, we need to introduce
some terms, which will be done in the next section.

1.7 The Rotation of a Vector Field and Stoke’s Integral
Theorem

Consider an arbitrary vector field a(r) . For any closed curve, we can write the line
integral §a e ds . We may also look at arbitrarily small area elements, and the line
integrals corresponding to their boundary. Reducing the size of the area elements
more and more will make the line integrals smaller and smaller, such that they will
vanish in that limit. However, the ratio of the line integral over its related area
element will converge towards a limit. We define a new vector field which we call
the circulation or curl of a (curi(a) or Vxa) as follows:

We choose three perpendicular, but otherwise arbitrary area elements
dA,, dA,, dA,, which share a common center in space. Together they form a right
handed system. With this we write the limit.

paeds

m
d4; -0 d4;

=7; (i=1,2,3) (1.34)
Note that the line integral in the numerator is an infinitesimal loop extending over
the boundary of the area element and the orientation is such that the line integral
forms a right handed system with the vector dA, (Fig. 1.12).
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Fig. 1.12

The limits r; are the components of the vector that represents V x a, the circulation
of the vector field a in the coordinate system defined by the three area elements. If

n, = — where m,en, =38, = 1 for i=k
A i i _
! 0 for i#k

represents the unit vector perpendicular to the area element dA;, then
Vxa = riny +ron, +ryng = (ry, 7y, 13)

or
n, e (Vxa) = r; = (Vxa),

It is not trivial that one can regard the components 7; as those of a vector. We still
need to prove that those components transform like a vector when transforming the
coordinate system (of course into another orthogonal one). We will not carry out
this proof here, but leave it to Vector Analysis. Using the definition of cur!/
provides Stokes Integral Theorem almost immediately. One looks at an arbitrary
area and calculate the related curl. One separates this area into many arbitrarily
small sub-areas and then apply the definition of curl onto those. The result is a sum
of line integrals where all internal parts cancel, and only one line integral over the
outer boundary remains — as was shown in section 1.6 (using Fig. 1.10)

jAanodA = §Caods . (1.35)

As before, orientation of the surface area and direction of the contour integral have
to form a right handed system. Applying eq. (1.35) to the electric field and using
(1.33) we get

fEeds = [VxEedA =0 .
This has to be true for an arbitrary curve or its surface area which it surrounds.
Consequently it must be true that

VE = 0]. (130

Conversely, eq. (1.33) follows from (1.35) and (1.36). This is because of
$Eeds = [VXE edA = 0
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z { {X,y,z+dz)

<X,y,Z> <X!y+dy!z>

y

Fig. 1.13
This means that egs. (1.33) and (1.36) are equivalent. Each follows form the other.

It is time to summarize our previous results. We found two important
integral relations, namely (1.20) and (1.33);

pDedA = [ pdt $Eeds = 0
These have two equivalent differential relations, (1.23) and (1.36)
VeD = p VxE = 0

The relation between them is established via the integral theorems
(1.24) and (1.35)

jVVoadr=§>Aa0dA IAanOdA=§>Ca0ds

(Gauss) (Stokes)

This pair of relations were derived for the electrostatic case, i.e. charges at rest. We
will need to modify one of the relations later, when we study time-dependent
systems. We will then explain why VeD = p or its respective integral formulation
can be applied without change, while the other (VXE = 0) requires modification.
It turns out that above definition is rather impractical, should one actually try
to calculate the curl of a vector field. Therefore, we will write the curl of a given
field a in its Cartesian components (Fig. 1.13).
It is sufficient to just calculate the x component and then generalize this result,
which can be done rather easily. Based on definition (1.34) and the additional
constraint that the orientation of the path forms a right-handed system with Vxa,
we write:

(Vxa). = lim a(z)dy +a (y+dy)dz—a,(z+dz)dy - a,(y)dz
dy,dz— 0 dydz
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Oa, 6ay
ay(z)dy +a,(y)dz + _y dydz — ay(z)dy % dydz —a_(y)dz

-~ lim 0
dy,dz—0 dydz
oa_, Oa
(—Z - —y) dydz
_ i oy oz/ " _ %4y ay
dy,dz—0 dydz oy Oz

Therefore formally expressed as the vector product of the Nabla operator with the
vector a:

oa 6ay 6ax 6az aay oa

Vxa = (L F__ ¥ X 2y TNy 1.37
A= e aa oy (-37)
Or written in the form of a determinant:
e e, e
Vxa=|09 0 0 (1.38)
Ox Oy 0z
a, a, a,

The determinant is the usual form used in Vector Calculus to express the vector
product. The vectors e,, e,, e, are the unit vectors in x-, y-, and z-direction,
respectively

e = (1,0,0)
e, = (0,1,0) (1.39)
e.=(0,0,1)

It is appropriate to deal with the curl in more detail, but we will abstain from this
here and leave it to Vector Calculus to fill in the intricate details. Nevertheless, it
shall be noted that the reader should not conclude from the notation
curl a = Vxa that curl a is perpendicular to V or to a. In contrast to a real
vector, it is not possible to assign a direction to the del (V) operator. The vector
resulting from Vxa can point in any direction relative to a. Vxa can be
perpendicular to a, it can also be parallel to it. The reader should convince himself
of this by studying a few examples.
Because of Gauss’s theorem, for an arbitrary closed surface one has

§A (Vxa) e dA = IVVQ(VXa)dT

And because of Stoke’s theorem
§A(V><a)0dA =0
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dA

~

ds
Fig. 1.14

The right side is zero because the line integral that is initially there, decreases and
finally vanishes when transitioning from an open surface to a closed one
(Fig. 1.14). Therefore, for an arbitrary volume

{)A Ve(Vxa)dt = 0

and because this is true for any volume, the integrand has to vanish
Ve(Vxa) = 0 (1.40)
Eq. (1.40) is an important relation. It says that the curl of an arbitrary vector field

has no sources. Proof of this relation can also be shown by directly applying
equations (1.26) and (1.37):

0 9] 0 %] Oa, Oa
Ve(Vxa) = ﬁ(_az 7_ay) + g(_ax 7_02) + g(_y 7_x)
Ox\0y 0z Oy\oz Ox 0z\Ox Oy
=0
The divergence of a vector field depends rather plausibly on the sources and sinks
of that field. The curl also has a plausible meaning. Let us, for instance, analyze a

rotating rigid body (Fig. 1.15). Its angular velocity is . Thus, a point at distance
from the center axis has the velocity

v=|v = or.

The angular velocity is oftentimes regarded as a vector whose magnitude is ® and
its direction points along the rotational axis of a right handed system. The curl of v
also has the direction of the axis, thus proportional to .

One finds that (see also Fig. 1.16)

)

Fig. 1.15
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(r+dr) do
do
Fig. 1.16 dr
IVxv| = lim o(r+dr)(r+dr)de —orrde
de,dr— 0 rdodr
~ iy 20rdedr—odride _ ,
do,dr —0 rdodr
that is
Vxv = 2w (1.41)

In the area of hydrodynamics, flows whose rotation does not vanish are referred to
as eddies. This refers to the circulation or rotation. Generalizing, we call those
fields curl free or irrotational whose circulation vanishes, while those whose
circulation is non-zero are termed rotational. Consequently, for electrostatics, one
has time-independent fields which have sources, but no circulation.

1.8 Potential and Voltage

An electrostatic field may be described by different, but equivalent terms:
» Itisirrotational

*  The integral §>E e ds vanishes

P
*  The integral _[P ‘E e ds solely depends on the points P, and Pg
A

but not on the particular path taken from P, to Pp.

This allows to express the field in a unique way by a scalar function, which is
closely related to the previously outlined line integral describing the work. In
section 1.6 we found:

jClEOds = jczEOds )

This is true for any path C; or C, between the points P, to Pg. (see Fig. 1.9).
Therefore, the potential function (or simply potential) can be defined by

o(r) = (po—j: Eeds |. (1.42)
0

The choice of the starting point r,, for which the potential may assume the value
@, is arbitrary. This is rather insignificant as just the potential difference (Voltage)
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is the important property. Accordingly, the voltage between two points P,(r;) and
P,(r,) is given by

7y 71
Voy = 93— 0 = (pofjroEOdsf(p0+jroE0ds (1.43)

= jrzE - ds

or more compactly

T
Voy = 0y—0, = _|'2E0ds . (1.44)

V51 is the work which can be gained per unit of charge when it is moved from P, to
P,. Consequently, the dimension for V,; is given as energy over charge. For two
closely spaced neighboring points, the infinitesimal potential difference is

dp=-Eeds=— (Exdx+Eydy+Ede)

_ (%9 150) o0p ) (1.45)
= ZXdx + v+

(axdx 6ydy 6zdz
= (Vo)eds

This is the gradient which, in general, is obtained from a function fin the following
way:

LAY
VAR = (55,5 - emdf (1.46)
From eq. (1.45) follows

(E- Vo |. (14

The scalar function ¢ describes the field completely because the gradient provides
all the components of the field. The function ¢ is the favored way to describe the
field, as this requires one to deal with a simple function instead of three functions
(one for each coordinate component).

Of course we have also

| Vx(Vg) =0 |. (1.48)
This is true for any function ¢ . The fact that the curl of the field vanishes, is the
prerequisite that allows for the definition of a unique potential function. There
exists a vector field for every potential, while the converse does not hold. Namely
there is no unique potential for every vector field (nevertheless, in rotational fields,
it is possible, and is sometimes done, to define not unique potentials). In general, it
is possible to prove the generality of (1.48) by using (1.46) and (1.37). For
instance, the relation for the x component is:

00p 009 _
Oy0z 0z0y
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The potential expresses the ability to do work, work of a particle at a particular
spatial location within the field. Is there a charged particle at point r, then the
equation of motion applies

mi = QE (1.49)
If we multiply this equation with ¥
mier = QE eoF

we get
drl o] _  ode
E[zmr } th
or
drl

a[iml‘erQ(p} =0

and

%ml‘z-i-Q(p = const | (1.50)

This is the law on conservation of energy. It states that the sum of the kinetic and
potential energy of a particle is constant. If one lets, for instance, a particle start at
location r, with velocity ¥ = v = 0, where the potential is ¢, one finds

1
Smv2+ 00 = 00,

or

V:J%((PO_(P):A/ZWQV . (1.51)

Here, V is the voltage through which the particle has “fallen”. This relation
between velocity and potential difference has many applications (for instance X-
rays, electronic optics, etc.)

The locations of a potential field at which ¢ is constant is defined as an
equipotential surface. For a displacement ds along such an equipotential surface
one has

dp =-Eeds =0. (1.52)

Consequently E is perpendicular to ds , i.e. E is perpendicular to the equipotential
surface. Equipotential surfaces and field lines are important to illustrate fields
(Fig. 1.17). Oftentimes many field lines are combined to form flux pipes
(Fig. 1.18). There are no sources in the charge-free space.

VeD = 0

or
fDedA = 0.
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E

E outer surface
D,

o=p; o=y =% /
7y

Fig. 1.17 Fig. 1.18

If one applies this onto a piece of the flux pipe, one obtains:
fDedA =§ DedA+ § DedA+$ DedA =0.
Al A2

outer
surface

For the outer surface (skin) the relation is
DedA =0.
One finds thus
§>A D-dA+§>A DedA = 0.
1 2

This means for an infinitesimally small cross-section, if the surface elements are
perpendicular to the fields, that:

—DdA,+DydA, = 0.

or
Dl _ A2
D2 Al
If the field components depend on the location
E.=E(x,),2)
Ey = Ey(x, Y, 2)
E.=E(xy,2) ,

then the equations for the field lines can be obtained from the differential equations

Ex:Ey:Ez =dx:dy.dz

1.9 The Electric Current and Ampere’s Law

The discovery of electric forces between electrically charged bodies has led to the
previously discussed electrostatic concepts. Besides those, another type of force
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has been known for a long time, the so-called magnetic force, whose close
relationship to the electric forces is a rather late discovery.

The earth, for instance, is surrounded or penetrated by a strange field, which
expresses itself by exerting forces on specific materials. This field or those forces,
respectively, have peculiar characteristics. For instance, they exhibit a force on a
magnetic needle by trying to align it into a specific direction, while they exert no or
only a minor net force on the needle as a whole. The primary effect is a torque and
to a lesser degree net forces, which may even vanish entirely.

Historically, these phenomena were explained in terms of “magnetic
charges”, which were thought to be located in the magnetic poles of a magnet. This
linguistic use is more confusing than helpful, and we will not introduce these
concepts here in this way. Magnetic forces are — as much as we know today — of a
different kind, as electrostatic ones which we have dealt with so far. We will refrain
from using this only seemingly apparent analogy that suggests magnetic fields as
the result of magnetic charges. Based on our current knowledge, there are no
magnetic charges. The cause of magnetic fields is rather an electric current, i.e.
moving electric charges. By experiment, one finds that a current carrying wire in
the vicinity of a magnetic needle exhibits a magnetic field that influences the
needle. Before we study this in more detail, we have to define the electric current
and electric current density. Observe an infinitesimal area element dA that is
perpendicular to the flow of the charge and through which in the time interval d¢
flows the charge d*>Q . Then the vector of the current density is defined as

d’0Q dA
§ = Godd 0 (1:5%)
The flux of g through a surface 4 is the electric current /.
d?0 _ d do
I= dA = [ 2 X = = do = == 1.54
I, Jar T ae T w (.54

This means that / is the total charge that flows through the surface per unit of time.

There are materials, within which charges can move freely, the so-called
conductors. This is in distinction to insulators, where this is not possible under
normal conditions (or only to a very limited extend). Thus, a current may flow in a
conductor. It is then surrounded by a magnetic field. The simplest case is for a
straight and infinitely long wire. In this case, one finds that the force on a needle of
a compass is inversely proportional to its distance to the wire (that is, with
increasing distance it decreases by 1/r) and that the magnetic needle orients itself in
a tangential way along concentric circles that surround the wire (Fig. 1.19).

To describe this situation one introduces the so-called magnetic field intensity H.
The accompanying field surrounds the infinitely long, straight wire in the shape of
closed loops. We will calculate the integral {aH e ds for any such closed loop. First
one determines the case when the loop does not enclose the wire, i.e. the current /.
As we found already before, it is possible to reduce those integrals to ones of the
form as shown in Fig. 1.20.
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Al

i

Fig. 1.19

In this case one has
2 3 4 1
Hed =( + +[ + )H d
jeds = (14 o o meds
where
2 4
IHOds=jH0ds=0
1 3
because of H.Lds, and
3 1
IHOds=—IH0ds
2 4

because of
3 C
Heds = — = -C
I2 *as r2r2(p ¢
and
1 C
Heds = + = = Co.
I4 *as r1r1(p ¢

C is a constant, which we will leave undetermined for now. The conclusion is that
for a path that does not enclose any current one has:

§3H0ds =0.

Fig. 1.20
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Next we study a path C that encloses the wire. If we add a circle that also encloses
the wire, which we connect to the given path, in the way specified by Fig. 1.21,
then we obtain an overall path that does not include the wire and consequently the
integral §H e ds vanishes. Because of the fact that the two integrals over the link
between the circle and the initial path identically cancel, one finds that the overall
path including the original path C and the line integral over the circle, which is
oriented in the negative sense (clockwise), also vanish.

§ HOds+§> Heds = 0.
G N,

or

$ Heds = § Heds = g27rr0 = 2nC.
C K o
N N
All such line integrals give or result in the same, non-zero value. Furthermore, one
can experimentally confirm that all forces, and thus also the fields are proportional
to the current. The introduced constant C is therefore also proportional to the
current. If there are several currents, one only needs to add those to obtain the
overall current, where only this sum is relevant. We summarize that for an arbitrary
path the integral is
fHeds~1,

where [ is the sum of all currents that are enclosed by a particular path. One can
choose the proportionality constant as one wishes, as long as one realizes that this
impacts the units for current / and field H and length ds, which are not yet
defined. So, one may simply choose

This is known as Ampere s Law. It is more general, and its validity goes beyond the
example of a straight wire, i.e. it applies to any distribution of currents, which can
easily be verified by experiment. It contains everything relevant for the relation
between time-independent currents and magnetic fields. We will need to make
modifications for the time-dependent case. One can rewrite the previous equations
a little:

Fig. 1.21
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+Q -Q

Fig. 1.22 H

$H e ds = .[AVXHOdA =1= .[AgOdA.

This is true for any surface. Therefore the integrands of the two surface integrals
have to be equal and it must hold that

Vol - g . (159

Equations (1.55) and (1.56) are equivalent. One follows from the other. Both state
that currents are the cause of magnetic fields. Their significance is similar to
equations (1.20) and (1.23), which described the relation between the electric field
and charges. There is, however, a big difference: charges cause sources of the
electric field; currents cause a circulation of the magnetic field. Electrostatic fields
are always free of circulation, while we will find that magnetic fields are always
free of sources (to be more specific, that the magnetic induction or B field, which
we will need to introduce, never has sources).

If we look at the results (1.55) and (1.56) more closely, one finds that there
are some difficulties and even contradictions, which indicate that their current form
can not be correct for time-dependent systems. Imaging two charged bodies with
charges +Q and -Q, respectively, as shown in Fig. 1.22. Those bodies exert a force
on each other. If we connect the two bodies by means of a conducting wire, then
the charges have a path to follow the electric field. The result is an electric current,
originating at the positively charged body, leading towards the negatively charged
one. If we attempt to use, for instance,. eq. (1.55) in this situation, we experience
some difficulties. Since the wire is neither closed nor extends towards infinity, we
have trouble deciding if a particular path encloses the wire or not. This difficulty is
even more apparent if we use (1.56). It gives

Ve(VxH) = Veg = 0, (1.57)

This implies that the current density is source free. Obviously this is not so, as the
current density originates at the charged body. During this process the charge
changes as some of it is transported by the current to the other body. To enable us to
discuss this in more detail, we will study the principle of conservation of charge in
section 1.10.
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1.10 The Principle of Charge Conservation and Maxwell’s First
Equation

Consider an arbitrary volume. Charges contained in it may flow in, or out of it.
This is the only way for the overall charge in the volume to change. The only other
possibility would be that charges spontaneously appear or disappear. Our
experience teaches us that this is not the case. This is the Principle of Conservation
of Electric Charge.

Expressed in a more general way, we find that the overall charge in the
universe is constant (probably zero). Although there exist processes where new
charges are created, this does not change the overall charge balance, because
always the same number of positive as negative charges are created. Our
experience up to now is that naturally occurring charges always come in multiples
of an elementary charge. For instance, in the negative charge of an electron or in
the positive charge of its counterpart, the proton. It is possible that a photon creates
a pair of particles with opposite charges (for example a particle, antiparticle pair;
electron, positron or proton, antiproton). We need to mention particles with charges
that are one third or two thirds of the elementary charge (quarks) which, however,
do not change the principle of charge conservation.

This principle is mathematically formulated as follows:

gedA -9 p-dt = |Veg-drt .
ot

Consequently

op
Veg +-L' = (0 |. 1.58
gt (1.58)

This is the continuity equation. It is an expression of charge conservation. On the
other hand

p = VeD

and therefore

ob
VO( +—) =0. 1.59
g ET: (1.59)
This means that the vector sum g+ 0D /0¢ is source free. Therefore, it is possible
to express it as the curl of a suitable vector field, as according to (1.40) the
divergence of any curl vanishes:

oD

Vxa = g+a (1.60)

At this point it is plausible to identify the vector a with the magnetic field intensity
H . In the time-independent case this would correctly lead to Ampere’s law (1.55).
It was Maxwell who recognized that this is incorrect in the general case. One
obtains Maxwell’s first equation as the correct generalization of Ampere’s law for
time-dependent processes.
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ob
VxH = g+ 5% (1.61)
The term g + 0D /0t is the total current density. It consists of two parts the free
current density (g,) and the displacement current density g, = 0D/ 0t
Maxwell’s first equation fixes the inconsistencies we experienced at the end of the
previous section. There exists a field between the charged bodies. The electric field
changes as the current flows and causes the displacement current which closes the
circuit For every closed path we have

oD
$H o ds jAVxHodA jA(g+&)odA ' (1.62)
The result of the integration becomes unique. That is, for a given path, it does not
depend of the chosen surface area. If this were not the case, there would be no
Stokes integral theorem. Let it be also noted that this can also be shown using
Gauss’ law and the relation Ve(VxA) = 0.

To derive eq. (1.59), we have used the relation VeD = p and thereby made a
generalization, which is not quite natural and should not be made without
qualifications. We have derived the equation VeD = p from Coulomb’s law for
charges at rest. Notice that the reverse conclusion may not be made. It is not
necessarily possible to derive Coulomb’s law from VeD = p. Field lines
originating at a charge could be organized in an unsymmetrical way, for which
Coulomb’s law does not apply anymore, still leaving the total flux equivalent to the
charge. We do not need to assume this kind of field for charges at rest, since due to
symmetry considerations no particular direction is favored. That is the reason why
Coulomb’s law applies to charges at rest. In order to find it, one needs to apply the
symmetry argument to VeD = p. For moving charges the situation is more
complicated. The symmetry consideration is not valid anymore because the field of
a moving charge is actually not spherically symmetric and Coulomb’s law is not
valid in this case. Still, VeD = p is applicable or jSD e dA = Q, respectively.
Although our starting point was Coulomb’s law as some basic fact, one now finds
that the relation VeD = p is more basic and more generally applicable. It could
even be seen as the real definition of charge, because for every charge, moving or
at rest, belongs a corresponding flux and there is no flux without charge. Fig. 1.23
gives a qualitative picture of a charge at rest and one that moves with a uniform
velocity. The field of the uniformly moving charge can be derived from that of the
charge at rest by facilitating the Lorentz contraction. The distortion of the field can
only be understood in the context of the Theory of Relativity. Nevertheless, this
distortion is correctly described in Classical Electrodynamics. The magnetic forces
caused by moving charges are exactly the consequences of the distortion of the
electric field. The magnetic forces are thus also of electrical nature. They are based
on the changes of the electric field due to motion. The distortion of the field of a
moving charge is a relativistic effect, that is, it is noticeable at very high speeds, i.e.
close to the speed of light and it would disappear if the speed of light were not
finite. In this case there would be no magnetism. Because Classical
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charge at rest uniformly moving charge
(high speed)

Fig. 1.23

Electrodynamics already contains magnetism, which is actually a relativistic effect.
It could survive the changes brought into physics by the Theory of Relativity
without changing it. Let us also note here that the field of a moving charge is not
irrotational. (A very worth reading discussion of those issues can be found in [1]).

Besides the vector H, we introduce the vector B, the magnetic flux density
or magnetic induction. For vacuum one has

The forces exerted by magnetic fields are actually based on B. It would be most
appropriate to call B the magnetic field strength, what some authors actually do.
L is the permeability of free space. Key to comprehension of the so far described
magnetic forces is the recognition that they only apply to moving charges.

F-0veB | (150

This is the Lorentz force. Is there also an electric field, then one gets the overall

F = Q(E+vxB). (1.65)
The Lorentz force is perpendicular to v and B . This results in strange effects. For
instance parallel currents attract each other (Fig. 1.24). The current /, (/;) causes a
field B, (B2 ) at the location of the current /, (/;) and this field induces the Lorentz
force F,, (F,,). It is interesting to study the force of a current carrying wire loop
that is placed in the field of another current (Fig. 1.25). The current / causes the
field B at the location of the loop S that carries the current /; The Lorentz force
acts only on currents that are perpendicular to B, and causes a torque, in much the
same way as we have described for the compass needle. As far as we know today,
all magnetic materials are characterized by currents that circulate within them
(Ampere’s molecular currents). This is apart from phenomenons related to the
spin—a basic property of elementary particles. The spin of those particles causes
them to act as if they carried circulating currents. We conclude that there are no
magnetic charges and all magnetic forces are ultimately Lorentz forces
(disregarding again the effects of the spin of the elementary particles).
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1.11 Faraday’s Law of Induction

In addition to the above described experience, there is one more basic property.
Faraday’s law of induction, usually referred to as the Law of Induction, formulates
this phenomenon in the following way:

If a magnetic flux through the surface of a closed loop changes over time,
then there will be an induced voltage in that loop, which is proportional to the
change of the magnetic flux.

By magnetic flux we mean the flux of the magnetic induction

‘ ¢ = [BedA ‘ (1.66)

The voltage that we find in a closed loop is the electromotive force (EMF) and is
given by the integral

$E o ds ,
which vanishes in the electrostatic case. Here, this is not the case and one has now
0
Eeds = — — , 1.67
$ = (1.67)

where we have already decided that a possible proportionality constant is
dimensionless and equal to 1. One may write as well

_ _ 0 _ 0
fEeds = [(VXE)edA = — EJBodA— {EBodA.
A A A
Since this is true for every surface 4, one may also write
0
VxE = — =B |. 1.68
x o1 (1.68)

The two equivalent relations (1.67) and (1.68) represent Maxwell’s ond equation, in
integral and differential from, respectively.
One takes the divergence of both sides in eq. (1.68) to find

0 0

Ve(VxE) :fVoEB =— 5V-B: 0.
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Note that Ve and 0/0¢ commute. Consequently, the divergence of B may only
be a time-independent spatial function:

VeB = f(r) . (1.69)
From our experience, we conclude that
fr)=0, (1.70)

and therefore

VB0 .7

The field lines of B are thus free of sources and sinks. As previously determined,
this means that there are no magnetic charges at which field lines could begin or
end. A frequent conclusion is that this means magnetic field lines have to either
close on themselves, or extend into infinity. This conclusion is, however, incorrect.
There are examples for fields whose lines do neither (a more detailed discussion on
this is found in Chapter 5, Section 5.11.2, which deals with magnetostatics).

1.12 Maxwell’s Equations

In the previous Sections we have introduced all of Maxwell’s equations. There is a
differential and an integral form for each of the those four equations. We
summarize them here, side by side.

differential form integral form

VXH:g-F%) i’cH.ds:IA(ng%)).dA

VE = _g* §Eeds - —%IABodA

VeB = 0 §>ABoa’A =0 (1.72)
VeD = p f DedA =] pdi

These are two vector and two scalar equations for five vector quantities (E, D, H,
B, g) and one scalar quantity (p ). Obviously, since every vector equation is
equivalent to three scalar ones, there are more unknowns (5 times 3 + 1 = 16) than
equations (2 times 3 + 2 = 8). If we consider, as we have seen in the previous
Section, that the relation VeB = 0 follows from Maxwell’s second equation, or
more precisely, VeB = 0 serves as an initial condition within the system of
Maxwell’s equations, then the discrepancy grows even larger. Now we have 7
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equations for 16 unknowns. That means, to supplement Maxwell’s equations we
need 9 more. At least for vacuum, we have met some of those equations already:

D= SOE}

(1.73)
B = p H

If we deal with matter in general, then we need to describe D in some form as a
function of E and B as a function of H (which we will discuss later in more detail).
These relations are called the constitutive relations:

D = D(E)}

(1.74)
B = B(H)

We gain another equation from the fact that electric currents in conductors are
caused by electric fields and thus somehow depend on the electric field

g =gE) . (1.75)
In the simplest case, and usually the most important one finds that the volume
current density g is proportional to E (this is Ohm’s law)

g =«xE. (1.76)

The coefficient « is the specific electric conductivity. Summarizing, one can say
that (1.74) and (1.75), supplement Maxwell's equations (1.72), making it a
complete system of equations.

Maxwell’s equations are linear. This is a consequence of the superposition
principle for both the electric and the magnetic fields (for the magnetic field, it is
contained in the reflections that led to (1.55)). Linearity is the formal expression
for the superposition principle. Linearity is also important for practical
applications, that is, to solve specific problems. Linear equations are much easier to
solve than non-linear ones. Linearity is lost when the supplementing “material
equations” (1.74) and (1.75) become non-linear, which is a possible scenario.
Maxwell’s equations exhibit a high degree of symmetry, which gives them kind of
an aesthetic charm. This symmetry is particularly obvious in the case of vacuum
with no charges or currents present. Here we get

VXH:@ VeB = (0 B = p,H
ot
(1.77)
VXE=—?; VeD = p D = ¢,E
t

We will see that this symmetry results in important consequences. A changing
electric field (0D /0t ) causes a magnetic circulation (VxH ), which is also varying
in time and causes an electric circulation (VxE), etc. This describes the
mechanism of generation and propagation of electromagnetic waves (Fig. 1.26), to
which radio waves, light, heat radiation, etc. owe their existence.
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This symmetry is somewhat lost when we introduce charges and currents.
This result is somewhat unsatisfactorily. At least as far as we know today, this
asymmetry is based on the fact that there are no magnetic charges which would
serve as sources of the magnetic field. There are a number of scientists who do not
believe that this is the last word on that matter. In fact, it is conceivable that such
magnetic charges, though not yet discovered, do exist. Thus the search for such
charges continues. If they exist, this would require one to make modifications to
Maxwell’s equations. It is a useful exercise to determine how this would need to be
done. Besides the spatial density of electric charges (p, ) there would be magnetic
charges (p,, ). Both could cause currents (g,, g,, ). In addition to the principle of
conservation of electric charges

op
Veg +_°=0, 1.78
*Z, T (1.78)
we would require the conservation of magnetic charges
op
Veg +__" =0. 1.79
*Em I (1.79)
Then
VeD = p, (1.80)
and
VeB = p . (1.81)

This gives us

VO(geJr%)) =0.

ve(g, +%3) - 0.

Those equations can be satisfied with the Ansatz

E E E E

SO SO
LEsn(EEs )

Fig. 1.26
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OB
Vxa = +=,
ST
oD
Vxb = + =,
e 5
We know that b represents H. In a similar way, to arrive correctly at Maxwell’s ond
equation from g, = 0, we identify a as representing -E. The overall result would
then be:
vxH = P i g VeB = p,
ot ¢
1.82)
OB _ (
VXE = — FTi g, VeD = p,

Should magnetic charges be discovered some day, Maxwell’s equations were to
modify in the indicated way. Some further remarks on magnetic charges are treated
in Appendix A.2.

We now return to Maxwell’s equations without magnetic charges. They
describe a vast abundance of phenomena, with which we will involve ourselves in
the following. This is usually done step by step and we will proceed in the same
manner. That is to say, we will not attempt to solve the full system of Maxwell’s
equations right way, but start with fields that do not exhibit any time dependency.
Then we get

VxH = g
VxE = 0
VeB = 0
VeD =p .

Two of those equations depend solely on electrostatic quantities and we already
know these equations

VxE = 0

VeD = p .
They define the electrostatics, which will be our first area of study. Of course do
we need to include the relation D = D(E). The other two equations

VxH = g

VeB = (
define the magnetostatic case, if we add the constitutive relation between B and
H . This topic will occupy the second principle part of this book. Only in the last,

the third principle part will we deal with the complete set of Maxwell’s equations
where we cover topics like skin effect, wave propagation, radiation, antennas, etc.
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We base all this on our current state of knowledge, which is not necessarily
final. It is always possible that new discoveries some day will mandate us to
modify our understanding and our theories. We already came across several
questions, for which there are currently no final answers, such as whether or not
Coulomb’s law is exact, or whether magnetic charges actually do exist, etc. This
lies within the nature of science. Of course even though our current answers may
only be preliminary, they are nevertheless interesting and important enough to
study.

1.13 System of Units

Initially, we left open the practical question of which units one should employ for
the various quantities That is, which system of units one should introduce. We will
now remedy this situation.

There are quite a number of different systems of units in use and there are
many discussions on which one would be best for whatever reason. Those
discussions are not profitable and we will refrain from doing it here. This book will
use a single system consistently, namely the MKSA system, which is used
internationally, and which in some countries is mandated by law.

Every system of units is based on basic units from which other quantities are
derived. The MKSA system got its name form the fact that meter, kilogram,
second, and Ampere were chosen as its basis. Naturally, every basic unit needs a
firm definition, i.e. it has to be defined through a reference or a “normal”. The term
needs a clear definition and experimentally, the quantity needs to be readily
reproducible. The normal could be of a physical prototype or a natural
phenomenon. For the MKSA system the four basic units are defined in the
following way:

1. 1 Meter (m): Since 1983, one meter is defined by the propagation time

of light. Specifically, the distance that light in vacuum travels during
S — s
299792458"°
Previously (1889 - 1960) the definition of the meter was in terms of a
prototype bar that was kept in Paris (France), which consisted of 90%
platinum and 10 % iridium. This prototype of the meter was supposed to
be exactly one ten-millionth part of the distance from an Earth pole to
the equator (but it was not accurate). Between 1963 and 1983 the defini-
tion was based on spectroscopy, i.e. the measure of the spectral line of a
particular wave length of Krypton-86.

2. 1 Second (s): Recently, the definition of time is also based on spectros-

copy, namely the time span of

9192631770 periods
of a particular radiation of caesium. Before that, 1 second was defined as
the 86400th fraction of a mean solar day of the year 1900.
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3. 1Kilogram (kg): It was, and still is defined as the mass equivalent to
that of a prototype consisting of platinum and iridium which is kept in
Paris (France).

4. 1 Ampere (A): The definition used to be that of a current, exactly con-

stant in time, which in one second deposits 1.118 mg=1.118 « 10"%kg of
silver from an aqueous solution of silver-nitrate. The unit defined in this
way is now called the international Ampere and differs slightly from the
so-called absolute Ampere, which is the one that is used today as the
basic unit for current. To understand this definition, we need to remem-
ber the attracting force between two parallel, current carrying, conduct-
ing wires, described in Section 1.10 (see also Fig. 1.24). If we take two
parallel wires of infinite length at a distance » from each other that carry
the currents /; and /, then the magnetic field B, that /; produces at the

location of the current /, is
1

17 Moy ¢

This results from the definition of B by (1.63) and from equations (1.55) or

(1.56), exploding the symmetry of the problem. If we choose for instance
(1.55) we get

fHeds = 2nrH, = I,

B, = poH (1.83)

that is
H =—.
2nr
The force exerted on the second wire follows from (1.83), together with

(1.64). The current in a wire consists of moving charges. The force on a single
charge in the second wire that moves with velocity v is

”0[ 1
F =
Qv 2nr
and the overall force on the whole wire is
I
£ = le lznr ; (1.84)

where the sum extends over all charges in wire 2. This is an infinite sum as the
wire is infinitely long and thus contains an infinite number of charges. How-

ever, the force per unit length remains constant.
V.
F, Boly zz‘Q’ !

f 2nr L
The expression (3, O,v;)/L is nothing more than the current I,.

(1.85)
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Ziini
VA I, .
Because of the definition of the current as the charge per unit of time that
crosses a particular cross section we find the overall relation

F_ Molil,

L 2nr

Next, we consider two infinitely long, infinitesimally narrow, straight wires at
a distance of 1m apart. We also require the wires to be parallel and carry the
same current / = [; = I, . If each one exerts the force of 2 - 107 Newton
per meter of its length, then the related current amountsto / = I, = [, = 14
(Ampere). Here, Newton is the unit of force in the MKS-system.

(1.86)

(1.87)

IN = 1 Newton = 17k
S2
This results in

2
2.1077117:%

m  2nm
With this definition of the basic unit Ampere, we have also defined p:

7 N
AZ

Ko =4m- 10 (1.88)

We have now introduced those four basic units. We will derive the other units from
these. There are the purely mechanical units. The unit for force was already used:
mkg

1 Newton= 1N =1 >

s
the unit for energy
2
Lloule= 1 = 1Nm = 1258,
s
and the unit for power
2
P Watt =1 = 122 = = ke
K s 3
This leads us to the electrical units. From the definition of current,
,_do
dt
we can derive the unit for charge
1 Coulomb=1C = 14s.

Note the interesting fact that the charge is just a deduced quantity, although it is of
fundamental importance and was the actual starting point of our discussion.
Charges occur in nature only in multiples of the so-called elementary charge
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(disregarding quarks). This charge is very small, and just a tiny fraction of one
Coulomb, namely

lex6-1071 C . (1.89)
By defining e in this way, we set the charge of an electron to -e and that of a proton
or positron to +e. Because of

F = OE,
The unit of the electric field is 1N/C, and thus the unit of the potential becomes
1 Nm/C(E = —Vo). It is called Volt:
Nm J w

I1Volt =1V =1— =15 = 1—.
Vo V C o

AN

Therefore
1V-14 = 1W
1v-1c=1J
From Coulomb’s law

_ 219

i -

4ns0r

one derives the dimension for g, [£,]

The numerical value can be obtained by measurement. It depends on the chosen
system of units. In our system of units

2 As

gy =8.855- 107! (1.90)

The previously mentioned unit for the electric field (1 N/C) may also be expressed
as 1 V/m. This settles the units for the electric displacement (D) to

As V. _ 4s _  C

which is obvious from the relation
fDedA = Q.

This definition allows us to write p, in a different form

[H]zﬂzVC=VAS=ﬁ
O 2 ma2 A2m Am
and finally
Vs
= 1076 —=
By =1.2566 - 10 T (1.91)

When comparing the definitions in (1.90) and (1.91) it strikes us that the product of
L, and €, has a purely mechanical dimension.
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The numerical value for this gives

L _9.1016 (@)2 =2 |, (1.92)
K€ s
that is the square of the speed of light. This is no coincidence. Historically, this was
the first indication that light is of an electromagnetic nature, which will occupy us
in later sections.

The unit for current density is 14/m?. The unit for the magnetic field intensity
H results from Maxwell’s first equation (1.61) to 14/m. Because of the relation
B = u,H, this determines the units for B to 1Vs/Am » 14/m.= 1Vs/m’. This unit is
called Tesla

1 Tesla=1T = IK“S .
m2
The unit for the magnetic flux is expressed in Weber and results to

15 0m2 = 175 = 1 Weber = 1wb .
m2
Another derived unit is that for Resistance
V
10hm=1Q = 1-
m 71

for Capacitance

C As K
1F =lF=1==1—==1=
arad 7 % o
and for Inductance
1 Henry=1H = 1% = 1Qs .

Those quantities have not been introduced yet and we will need to make up for this
later. The definitions for 1 Henry and 1 Farad are also used to express iy in Henry
per meter (H/m) and g in Farad per meter (F/m).

Every physical unit has to be understood as the product of a numerical value
and a unit:

quantity = numerical value * unit
Examples for this are found in equations (1.88), (1.89), (1.90), and (1.92) of this
section. The usual rules for calculations apply for such products, which should be
clear from the way we derived the relations.

Finally, to conclude this section, we will state some useful conversion factors
towards other frequently used units of measurement.

1 Tesla=1T = 10* Gauss

1 Maxwell = 1M = 108 Weber

1 electronvolt=1¢eV = 1.6 107"° Joule .



2 Basics of Electrostatics

2.1 Fundamental Relations

The fundamental relations of electrostatics were introduced in Chapter 1. Before
discussing electrostatics in more detail, we summarize the basic results.
The force between two charges Q; and Q, is given by Coulomb’s law:

_ 919 n-n

F., = . (2.1)
12 41-580 |(r2—r1)|3

This, in turn, determines the electric field that a charge Q; at location r, produces
at location r in free space

Q1 r-r,

E(r) = —— 22
() dng, |(rfr1)|3 (2:2)
while the electric displacement is defined to be
0, r-r,
D(r) =gk = — ——— . (2.3)
4n ‘(r - r1)| 3
For an arbitrary charge distribution it follows that
DedA = Q0 = dt . 24
§D o 0= Pt (2.4)
or
VeD =p . (2.5)
For charges at rest (this is what is discussed in this chapter) one has
fEeds = 0 (2.6)
or
VXE = 0 . 2.7)
This is the basis for defining a potential function
r
o(r) = cpo—jr Eeds . (2.8)
0

Conversely, the electric field is given by
E=-Vop. (2.9)
Because of (2.5), it is also true that
VeE = £ | (2.10)
€0
Using (2.9) one obtains

Ve(-Vo) = £
0

G. Lehner, Electromagnetic Field Theory for Engineers and Physicists,
DOI 10.1007/978-3-540-76306-2_2, © Springer-Verlag Berlin Heidelberg 2010
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or

Ve(Vp) = V2 = Ag = ng . (2.11)
0

This is Poisson’s equation, which is going to play a central role . For the specific
case of p = 0, one obtains Laplace’s equation

Vi =0 |. (2.12)
Expressed in Cartesian coordinates
009 00p, ddp _ 07 02 o2

Vip = —0+—0+—0,
® " oo yay 0z0z  axd o2t a2
that is
2 2 2
y2 o 02 0 o7 (2.13)
ox2 oy? 0z2

The symbols V? or A represent the Laplace operator also referred to as
Laplacian.

2.2 Field Intensity and Potential for a given Charge
Distribution

If one places a point charge Q, at location r,, one finds the electric field intensity
to be
1 r-rn

Y
E(r) = 41‘580. |r—r1|3 @19

or written in terms of its components:

E - 4Ql - X=X
Ty Jx—x)2+ -y)2+ (-2
E, = 4% ' — 3 (2.15)
0 Ja—x)2+ -y +(z-2))?
_ 0, . z—z,
B I O EE R CR A CEE i
To calculate the potential we will start from the general definition:
¢ = ‘PB_J:BE'dS , (2.16)

where @ is an arbitrarily chosen reference potential evaluated at point ry
(reference point). To calculate ¢, one needs to evaluate the line integral along
some path from rj to r. Since the integral is independent of the chosen path, one
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Fig. 2.1

has the freedom to choose any convenient path as proven in the previous chapter
(Section 1.6 - 1.8).

We will take advantage of this freedom and simplify an otherwise difficult
task. We choose the path indicated in Fig. 2.1. Starting at our reference point ry,
we head towards the charge at r, until we reach the concentric sphere around Q,
on which our field point r lies. This is at point r', where

|r—r1| = |r‘—r1| .

Then we continue on the sphere, centered at the location of O, , towards the field
point r until we reach it. We write the integral

r r
o(r) = (pr_[r EOdsfjrlEOds
B

r-r| O

"
= —| Eeds = — -dx
5 '["B 5 I|"B—r1|41cs0x2
9, 9,
= (PB+ 4 1 - 4
71',80|I‘ —r1| 4TC80|I'B—I'1|
0 0
o(r) = gg+ L . (2.17)
4n80|r—r1| 4n80|r3—r1|
If we decide to pick ¢, = 0 for a reference point at infinity, then
0 0,
o(r) : (2.18)

Ameglr =1y 4ney fx—x )2+ (r—y)? +(z-2))
We use this to calculate the electric field
E =-Vo,
and find the field components according to (2.15).
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If one has many point charges Q,,0,,...,0,, ... at the locations
Y, r, ..., I, ..., then, because of the superposition principle (which applies not
only to the field, but also to the potential), one uses
9;

= _— 2.19
¢ Z4nao|r—ri| @19
1
In general, the charge distribution may be continuous. When the charge density is
given as a function of the location r, then

_ 1 _ p(r)drt
o(r) 4mof|r7r.| 4“%! ] (2.20)

where dt' is the volume element in the space of the vector r', i.e

dt' = dx'dy'dz' . (2.21)
The corresponding electric field is
C Ve(r) - p(r)dv
E = —Vo(r) = pp gj el (2.22)

Notice that the gradient operator operates on r only and not on r'. To highlight
this, the del operator is marked with the index ». Now

1 1

V. =V B
el T e e )
_ 2(r—r") = - r—r'3 , (2.23)
222+ -y +(z-2)2  ror]
and finally
_ p()(r—1) -
E(r) = 41138‘[ r—r|3 . @29

Sometimes one deals with situations where there are charges distributed on
surfaces or line elements (surface charge, line charge). One then defines the
surface charge density ¢ as the charge per unit area,

=49 (2.25)
d4 -~
The associated potential is then given by
o(r') ..
o(r) = 4n8 I|r ;0 dA (2.26)
and the electric field
1 jo)(xr-r), .
E(r) 4n80j s dA (2.27)

Similarly, the line charge density or linear density ¢ is defined as the charge per
unit length,
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do
==, 2.28
= 7 (2.28)
with an associated potential
)
2.29
o(r) = 4n8 — [ O (2.29)

and the electric ﬁeld

jq(r)(r Dar . (2.30)
r|3

In principle, these formulas allow for the calculation of the potential and electric
field for an arbitrary distribution of point charge, line-, surface-, and volume charge
densities, as well as any combination thereof. However, carrying out the integrals is
not always easy for real-world problems, and the mathematical difficulties may be
appreciable. Nevertheless, it is frequently possible to simplify the task by taking
advantage of symmetries. This is illustrated in the next section via some specific
examples.

E(r) = dng

2.3 Specific Charge Distributions

2.3.1 One-dimensional, Planar Charge Distributions

In this case, p is a function of only one Cartesian coordinate (e.g. X):

= p(x) .
Here, it is better not to use the general integrals of the previous section, but start
with considering the symmetry. E and D have to depend on x only and can only
have an x-component. For the same reasons, the potential can only have an
x-dependency. This enables us to start with the relations

oD
VeD = % = p(x) (2.31)
Ox
and
0 p(x)
Vip = =B/ 2.32
¢ = -a2® e (2.32)

which allows one to calculate D, and ¢ by integrating once and twice,
respectively. Thus

D (x) = Lu(a)+j;p(x)df - %[if(xﬁak'Ar%Ljp(XWak’ (2.33)

It is left as an exercise for the reader to determine how the constant of integration
D (a) needs to be chosen, in order to arrive at the result.
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2.3.2 Spherically Symmetric Distributions

If the charge distribution depends solely on the distance  to a center

r= 242422, (2.34)

then it is spherically symmetric and
p=rp().

It would be very difficult to calculate ¢ and E by using the general integrals.
Exploiting the symmetry simplifies the problem dramatically, however. One may
assume that E and D only have components that point towards or away from the
center (radial components £, and D, ) , and that these depend on » only. One
surrounds the center of symmetry with a concentric sphere, which allows one to
apply relation (1.20), and immediately solve this problem:

SGADOdA = .[Vpdr

that is
-
{aADr(r)dA = Dr4nr2 = jop(r')4nr'2dr'
or
1 " 1N\ 12 T
D.(r) = ﬁfop(r yr'edr (2.35)
and
E L 2d
= — ) g 2.36
A7) 8Orzjop(r)r r (2.36)
Finally, if we also choose @ = 0 for the limit of » — oo, then
" 1 r' ALl " 1" Al
o(r) = —I —Q(I p(r"r 2dr)dr . (2.37)
oogor 0
On the other hand we have

0 _ L r "y, M2 7on
200 = - 80rzfop(r )r2dr

2 _ "y, m2 "
r —r(p(r) = —S—OIOP(F )r dr

0 ( 20 ) I SR
ar r 5(\0(’") gop(’”)r
and thus
10(20 __p(»)
rza(r 5(;)(1’)) e | (2.38)
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Fig. 2.2

This is nothing other than Poisson’s differential equation for the specific case of
spherical symmetry. In a later section, we will find that (1/72)(8/0r)(r?)(8/0r)
is nothing else than the radial part of Laplace’s operator V2.

To illustrate this, we use a simple example. Suppose a sphere with radius r,
is filled with the uniform volume charge density p,. There shall be no other
charges. The electric field then results in

1~ 1 3 _ Po
for r<r,: E(r) = — ridr = —po= = —
0 r( ) SOFZ'[OpO < r2p03 380
3 3
. R O T | o Po’p 1
for I"ZVO. Er(r) = mjo por dr = JPO? = 380 r_
For the potential one finds
. e iang . (oP0"d 0 1
for r<ry: o(r) = fjooEr(r)dr = _[ 38 s _[r0380
_porgl Po(r _ro) po3rg—r?
3gqry 3¢, T2 3gg 2
3
Pord 1
> 4 - = —
for r>r: o(r) 3oy 7

A plot of these relations is given in Fig. 2.2.

Conversely, it is also possible to find the charge density for a given potential.
One might ask, what charge density gives the spherically symmetric potential
(Qy/4neyr)? If one wants to proceed formally, then one may use eq. (2.38) to
calculate p(7).
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9 826()7Q0182(7_1§) Q 10,

4me, y20r Or dreyr2or 4n80r28r

The result is thus that p = 0. This not entirely correct. In order to differentiate,
one needs to exclude the origin. However, this is where the charge O = Q, is
located, and it is precisely this charge that creates the given potential. This example
illustrates that one needs to be mathematically very careful when dealing with
point charges. To remedy this, we will introduce the Dirac 8 function in a later
section. It enables one to formally treat point charges in the same way as other
distributions. The point charge could also be somewhat hidden and thus less
obvious than in this trivial example. Take, for instance, the potential

_ 2 (=

dngyr P
This is the so-called shielded Coulomb potential (in contrast to the ordinary
Coulomb potential (Q,/4mne,r)). It is relevant for the theory of electrolytes and

plasmas, which will not be covered here. The volume charge density for this
potential is:

- o 10,00] %0 % _r
P(r) = ~2o 28r 8r{4n80reXP( )

910 of 1 r 1 r
BT [—;GXP(‘ 70) ‘rTDe"P(‘ . ﬂ

_ Q1 (_ L)
47Trr% p ’

)

¢

This allows one to calculate for example, the charge within a sphere of radius 7.

r r QO 1 rl
' 4 '2d ¢\ — =v_1 (_ _) %) ,
Iopo(r) nr'edr IO 47Tr'r26 Xp . 4nr'<dr

“olie 2ol )

One finds the electric field intensity
el el £
_ Y = -+ — = .
(p( )= dngg\, 2 rrp %P p
From this we obtain the charge inside a sphere of radius r:

4neyr2E, = QO(I + = ) exp(f 1) :

D D
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Fig. 2.3

There appears to be a contradiction. The integration over the charge density led to a
charge that is smaller by Q, . The puzzle is resolved if one looks closely at £, fora
very small radius:

Qo(l +é)exp(— L) 0,

P
D
E, = =
2
4ns0r 4TE€07"

5 -

This is the field generated by a point charge located the origin (or the potential
0,/ 4neyr of a point charge at the origin) for very small radii. This point charge is
not included in our expression for p and in the integral over it. This clears up the
apparent contradiction. Again, it appears that is necessary to be very careful. The
total charge outside of the origin is just —Q,, the overall charge is then zero. The
charge outside cancels the point charge, and shields it, which is why we refer to this
as a shielded Coulomb potential.

2.3.3 Cylindrically Symmetric Distributions
If the charge density depends solely on the distance » from an axis, then this
distribution is deemed to be cylindrically symmetric (Fig. 2.3)

p = p(r) (2.39)
with

r=Jx2ty2 . (2.40)

If we replace the concentric sphere of Section 2.3.2 by a coaxial cylinder, then we
may proceed in much the same way as before. Starting from

§>AD0dA = prdt,

now, on a per unit length basis, we obtain:
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-
2nrD, = Iop(r')an'dr'
or
1 " \l \l Al
D, = ;_[Op(r )y'dr', (2.41)

where D, represents the component of D which points away radially from the
axis. This is the only component of D, which results from the symmetry of the
problem. From this we get

1 .r ,
E, = g—rjop(r')r'dr, (2.42)
0
and
_ 1 1( "y ) :
[0) SOIrBr' .[0 p(r"F'dr'|dr (2.43)

if the potential ¢ = 0 for » = rj. Then

a(P — L "M 7o
3 80r_[0p(r yr'dr
a(p — 7l r (IR 1]
ra 8Oj.op(r )yr'dr

0(,%) _ _ el

or\' or &g
that is
lﬁ( 6_@) __ P
ror r@r g (2.44)

This is again Poisson’s equation, now for this specific case of cylindrical
symmetry. As an example, consider a cylinder of radius r, with uniform charge
density p, . There shall be no other charges. Then the electric field is

for r<r,: E (r) = LJ.V rdr = &r
=Tp- r Eor oPo 2¢,

1 " PTG 1

for r>r: E(r) = %IO pordr = ——280 .=

For the potential, under the assumption that r, > r,, one finds

for r<r: ¢ = —J'VBEV(F')dr‘ = —J'rZZ'r(r‘)dr' —Irfr(r’)dr'

__Pg, Ty &(24%)
280 g 280 2
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Fig. 2.4
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5571
N R
¢ =-S5 —[In—+
€| g
2
r Po’0, r
for r>r,: =\ E()dr = -——In— .
0 ¢ JrB r( ) 280 rp

These relations are shown in Fig. 2.4.

An interesting limit is obtained in the case of a line charge at the axis. In this
case, r, approaches zero, but it does this in a way that the product pyrin = ¢
remains finite. The p,, therefore, needs to become infinite. In this case the field
becomes

E =4, 2.45
! 2ngyr (245)
and
= __9 1, 2.46
¢ 21, an ’ (246)

where rg(0 < rz <o) is the radius where ¢ vanishes. Here, ¢ is called the
logarithmic potential, and is typical of the straight and uniform line charge. The
potential shown in Fig. 2.4 is not a true logarithmic potential because it is not
logarithmic for every radius r.
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2.4 The Field Generated by two Point Charges

The field generated by two point charges as a special case from the potential of

eq. (2.19)
o L { 0,
Aneol Joo a2+ -y)?+ (z-2))?
+ 2 }
JE—x)2+ (= 3y)2+ (2 - 2,)?
Taking the gradient gives in column vector notation:
R 0,(x—x) T
4“80b(xx1>2+(yy1>2+(z21)2 ’
0,(x—x,) }
Jo ) -y )2t (zzy)?
1 0,v-»p
E 4“80b(x—x1)2+(y—y1)2+(z—z1)2
= (2.48)
0,(y-7,) }
Jo 32 -y)2+ (z-z,)?
| 0,(z-z))
4“80{J(xx1)2+(yy1)2+(zzl)z
0,(z-2,) }
Jo ) -y (zzp)?

We will use a coordinate system according to Fig. 2.5 and then simplify above
expression somewhat.

(2.47)

+

+

+

We have
r = 200
2.49
o (2.49)
r2 - <+§7 Oa 0>

and
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r-r,
y
o r ><'
Q1 QI é Q2
2 2
Fig. 2.5
. Ql(x-i-g) Qz(x—g)
E = +
X 47:80 3
J(x+d) +y2+22 /\/(xg) +y2+22
£ 1 Oy . O,y
Yo 4ng, 2 3 2
«/()Hd) +y2+22 J(x—é) +y2 472
1 Q1Z n sz
7 4mg

(x+£/)2+y2+22 ’ (x_c_l)2+y2+zz
L 2 2

(2.50)

A remarkable fact is that there exists a point where the field vanishes. This is
a special point and, because of the frequently mentioned analogy to flux problems,
is called the stagnation point. To calculate its coordinates x, y,, z, , one sets all
three components of E in eq. (2.50) equal to zero and then solves this equation for
= z,. We skip this simple calculation and just give the result:

x=xs’y=ysﬂz

\CRESH

\SRRSH

5h ek

for charges of opposite signs

for charges of same sign

(2.51)
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separatrix

0, X
9 ©_ 1

Fig. 2.6

The stagnation point always lies on the straight line connecting the two charges.
For charges of the same sign, it lies between the two charges and closer to the one
with the smaller magnitude. For charges of opposite signs, it lies outside closer to
the charge with the smaller magnitude.

The stagnation point exhibits a strange property, namely that force lines cut
one another here, which is possible only because the field vanishes at this specific
point.

Knowledge of the location of the stagnation point is rather useful in being

able to generate a qualitative picture of the field. Let us investigate the case of
opposite charges as shown in Fig. 2.6, where for example, O, >0, 0, <0,
|01| > |Q,| - Some of the force lines which originate at O, end at Q, . Since it was
given that |Q,| > |Q,| , not all can end at O, . Those which can not end at the other
charge, extend to infinity. This is plausible, as from a great distance the
configuration has to appear as that of a point charge of value O, + O, . There are,
therefore, two kinds of force lines: those that end at O, , and those extending to
infinity. They can be found in the different regions of Fig. 2.6, which would
provide the full 3D picture if rotated around the x-axis. The border of the two
regions is made up of force lines that run through the stagnation point and from that
point on, they can no longer be uniquely traced. Those lines of force are sometimes
referred to as separatrices, i.e. as lines that separate different regions. Another
interesting task is to analyze the equipotential surfaces (see Fig. 2.7).
Again, the equipotential surface which passes through the stagnation point plays a
prominent role. It is also called separatrix. It separates the space in three different
regions. The first region encloses just one charge, the second just the other, and the
third region encloses both charges.

For charges of the same sign, we show the electric force lines and the
equipotential surfaces in Fig. 2.8 and Fig. 2.9. The separatrices are highlighted

It is possible to show that the angle between those equipotential surfaces
which pass through the stagnation point and the x-axis is the same in both cases
and for all charges. One finds

tana = ﬁ, a = 55°.
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X
Fig. 2.7
y separatrix
% =15
0,
o S 0, X
Fig. 2.8

This is even true for rotationally symmetric charge distributions of all kinds, not

only for the case of the two point charges discussed here.

If there are more than two charges, the configurations can become rather
complicated. Then, knowing the location of the stagnation points, is a particularly
useful means to understand the structure of such a field.

For future purposes, we investigate here the equipotential surface ¢ = 0 for
the special case of two opposite charges, where
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separatrix
A
&J
Fig. 2.9
0 = 1 0, N 0,
4reg, 2 2
J(x+g) +y2+22 J(xgj +y2+22
or
124 _ [

2 2
J(x+§) +y2+ 72 J(x—g) +y2+ 72
Taking the square gives
2 2
Q%(xzfdx+%+y2+zz) = Q%(x2+dx+%+y2+zz)

or

(x_@wfwzﬂz | _0i03
01-03 (01-03)°

55

which is the equation for a sphere. Its characteristics are illustrated in Fig. 2.10. As
before, we assumed |Q,| > |Q,| . The distances of the charge from the center of the

sphere are
2
rlzstrgl:d 2Q1 2
2 01-0;
r :xfd*d Q%
, a _
Y2 07-03

From this, we find

(2.52)

(2.53)
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Fig. 2.10
r Q2
r—l = Q—; (2.54)
2 2
and
42 2N2
riry = (Q2Q1QQ22)2 -2, (2.55)
%

that is, the product of the two distances equals the square of the radius of the
sphere. We will use this result when we discuss image charges.
Also interesting is the case of opposite charges having the same magnitude.

Q1] = |0y = ©
that is
Q2 = _Q1

Based on eq. (2.51), the stagnation point has now moved to infinity. All force
lines that originate at Q, (if O, is positive) end at O, . This results in a field as
illustrated in Fig. 2.11, and is called a dipole field. One can assign a dipole moment
to these charges (Fig. 2.12). The dipole moment is a vector quantity which points
from the positive to the negative charge, whose magnitude is

10lldl = [Ql[r, —r.
where
p = 10l(r,-r) (2.56)

>
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+Q -Q

Fig. 2.11 Fig. 2.12
p = Ipl = |0ld (2.57)
d= |r+—r_| . (2.58)

If we let O approach infinity and d approach zero in such a manner that p
remains finite, then we have created an ideal dipole. It will be discussed in detail in
the next section.

2.5 The Ideal Dipole

2.5.1 The Ideal Dipole and its Potential

Consider a charge —Q be at location r; and a charge +Q located at r; +dr, . The
dipole moment is (see Fig. 2.12)

p = Qdr, .
Imagine increasing Q and decreasing dr, at the same time, in such a way as to
keep p fixed. The related potential for the charges is

0 = 0 [ 1 1 J
dng, |rf(r1+dr1)| ’rfrly
In terms of the Taylor expansion:

1 S NN
[r—(ry+dr))| |r—r Oxy|r—ry

0 1 o 1
p 2L g 0 1
16y1|r7r1| 1azlrfr1

-1 i
= m‘i’drl .vr1|r7r1| + ...

The gradient operator is marked with the index r; to express the fact that the
derivatives are with respect to the components of r, , The potential is now
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having used the fact that
1 1

r |r7r1| T vr|r7r1| '

Finally we get for the potential

1
p.vr‘rfrly po(rfrl)
0 =-— = ; (2.59)
g 4n80|r7r1|

where r is the observation point and r, the location of the dipole p . Using the
angle 6 between p and r —r, as illustrated in Fig. 2.13, we write

¢ = ——EJEEQ—E (2.60)
4n80|r—r1|
r-r, z =

- |
—

g r |
0

y |

\ S -="

P = =
ol x

Fig. 2.13 Fig. 2.14

The dipole field shall be discussed in more detail. It is rotationally symmetric
around the axis parallel to the orientation of p . We choose that to be the z-axis of a
Cartesian coordinate system (Fig. 2.14). For this situation one obtains

pcosO _ pz

dmegr?  Ameg(x?+y2+z2)320

with
z

[x2+ 32+ 22

cosO =

Consequently
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E —_9%9 _ 3pxz
X ox 47c80(x2+y2 +22)5/2

__ 09 _ 3pyz
E =_99_ 2.61
Yo Oy dmey(x2+y2+22)32 @61

2
E =-29- 2 (3 = 1)
0z dmey(x2+y2 +22)320 x2 42 + 22

Because of the rotational symmetry, it is sufficient to calculate the field in a plane,
e.g., for the x-z-plane (y=0) (see Fig. 2.15).

E = 3pxz _ 3pcosBsinb
T dmey(x?+22)2 4meyrd
E, =0 (2.62)
E - p(3cos?0—1)
z 3
dmegyr

If we transform to spherical coordinates (7, 6, ¢ ) then the azimuthal component
vanishes. The remaining components are:

E, = Exsine +Ezcose — 2pcosf
4meyr?

. (2.63)
psin6

Ee = EXCOSG—EZSine = 3

4Tcsor

All lines of force pass through the origin. This may initially seem surprising, but is
quite plausible if we consider Fig. 2.15 as having emerged as the limit from
Fig. 2.11.
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Oftentimes, one deals not with individual dipoles, but rather a collection of
dipoles distributed over a volume, surface, or a line, more or less densely filled
with dipoles. Like for potentials for volume, surface, or line charges, where one
employs the superposition principle to integrate over the potentials of point
charges, one similarly makes use of the superposition of the potentials (2.59) of the
“point dipole”.

2.5.2 Volume Distribution of Dipoles

If the dipoles are distributed within a volume, the resulting volume density is
defined by the quantity

dp

dt '

This is the polarization, which turns out to be an important quantity. This
distribution generates a potential

- P(r')e Vrﬁdr'
=" 4re,
(2.64)
O
4ng

This expression leads to interesting consequences. We start by considering the
following integral

1 N ,
ey V(PO [
1 VaeP(r) 1 1
— ' 1 . '
47r80I Ir—r a 4n80jP(r) "V Ir—r'ldT
_ 1 {)P(r') o dA'
dneyt r—r|

where we have used the vector formula
Ve(fa) = fVeat+aeVf.
Thus

1 Vr' o P(r") . 1 §P(ry) o dA'

— 2.65
4ns0j [r—r| ¢ dngy?  r—r| (265)

(P =
Comparison of this equation with equations (2.20) and (2.26) reveals that it is
possible to think of a volume distribution of dipoles as the result of superposition
of a volume charge distribution and a surface charge distribution, namely by

| p(r') = —VeP(r') | (2.66)
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dipoles A A A aaaaan |P

Fig. 2.16

and

P(r') e dA'
dA'
This important result can also be made plausible, by considering this example.

Consider the disk shown in Fig. 2.16, filled with uniform polarization P .

The charges of the dipoles inside the volume cancel each other. Only at the surface,
there will be a net, bound charge. The net charge at the top is a positive surface
charge and the one at the bottom is negative. One may think of this as the result of
two disks of uniform volume charge which are slightly displaced against each other
(Fig. 2.17). If the volume charges are +p and -p, and the displacement is d, then
we find for the polarization P = pd and the surface charges are £pd = £P. The
reason is that P is perpendicular to the surface of the disk.

o(r') = P(r')en (2.67)

c=+P
+ + + + + + + +
S I T -
+ + + + - - - -
P c=-P

Fig. 2.17

The general case is illustrated in Fig. 2.18, where the surface charge is given by
Ny = pd-dA-cosy _ P(r')edA
dA dA ’
which is also the result previously obtained in a more formal manner. If the

polarization is not uniform, then the charges inside do not cancel entirely and there
remains a net volume charge. Fig. 2.19 illustrates this case. It shows a volume with

o(r
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Fig. 2.18

Fig. 2.19

dipoles inside. At the end of each dipole vector, there is a positive and at its
beginning a negative charge. We have

fPedA = -0 = ifypd‘c ,

i.e., the overall flux of the polarization P over the surface is equivalent to the
negative of the charge in the volume (a vector P that points outward represents a
negative charge inside). Conversely,

$P e dA = .[VV°PdT ,

and comparison mandates that
p = —VeP .
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2.5.3 Surface Distributions of Dipoles (Dipole Layers)

If we place dipoles on a surface, one obtains a so-called double layer or dipole
layer. The name stems from the fact that it is equivalent to two layers of opposite
charges. As shown in Fig. 2.20, let p point in the direction of dA'. We define the
surface density of the dipole moment

=4 (2.68)
dA'
Using (2.60), we find for the potential
o= wose'z daA' . (2.69)
o Ameglr—r]
With the solid angle element
dQ = Cosf df (2.70)
Ir—r2

field point

origin

Fig. 2.20

1 unit length

Fig. 2.21
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by which the surface element d4' is seen from the field point. The element of the
solid angle dQ2 is the projection of the surface element onto a unit sphere centered
about the field point, as illustrated in Fig. 2.21. It can be calculated by eq. (2.70).
Consequently, dQ2 and Q are dimensionless quantities. This definition is in
analogy to that of the “plane” angle (see Section 2.5.4, on line dipoles and in
particular Fig. 2.29, which is the equivalent of Fig. 2.21 for that case).

The result is

1
= — | ©dQ |. .
Gmeg jAr @.71)

Specifically, for a surface with uniform surface density of the dipole moment we
find

_ =z
41‘580

, (2.72)

where Q is the solid angle under which the uniform dipole layer appears when
looking from the field point. Confusion with the electric flux (for which Q was
also used) should not be an issue.

As an example, let us consider a sphere whose surface is uniformly covered
with outwardly facing dipoles. We may picture this uniform dipole layer as
consisting of two concentric spheres with opposite charges, where the charge is
very large and the difference of their radius is very small. For all points inside the
sphere we have Q = —4mn (the negative sign is a result of the definition of 0 in
Fig. 2.20). Conversely, for all points outside we have Q = 0. Therefore (for
outwardly oriented dipoles) we get

X inside
o =1 % . (2.73)
0 outside

When passing through the dipole layer from inside to outside, the potential
experiences a discontinuity by t/¢, .

This result can be generalized. It applies to a dipole layer of any shape and is
independent of whether 1 is uniform or not. Passing through a dipole layer in the
direction of the dipole increases the potential by t/¢,, where t is now a function
of the location. The potential difference depends on how one passes through the
dipole layer. One proves this generalized claim by beginning with a surface that is
covered with electric charges. Let the surface charge density at a particular point be
o and the electric displacement just above that point be D,, and the one
underneath D, . One can split D, and D, into their parallel (tangential) D, and
perpendicular (normal) D, components with respect to the surface (Fig. 2.22).
Now, one applies eq. (2.4) to the small cylinder shown in Fig. 2.22 whose extent
perpendicular to the surface shall be so small that the contribution of the sides of
the cylinder vanishes. The remaining contribution is
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Fig. 2.22

Fig. 2.23

(D,,~D,,)dA = cdA

or

‘ D,,-D,, =oc ‘ (2.74)

Notice that we did not make any statement about the tangential components, here,
which will be covered in a later section. Now consider the case of two parallel
surfaces in close vicinity with surface charges of opposite sign (Fig. 2.23), for
which one finds:

DOn_Dln = ~0,

D D, = +oc

2n~ ~0n

From these two equations it follows:
D, =D D

2n 1n — Fn

and
Dy, =D,-c
Therefore, the normal component of D remains unchanged by the dipole layer. The

normal component of D within the layer is decreased by the value of . The
voltage when passing through the layer in perpendicular, positive direction is:
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D D, —-c
8¢ = —Ey,d=— —2d= - ——d. (2.75)
€ g
0 0

As before, the positive direction is the direction of the dipole moment. D,, is finite,
while d is arbitrarily small and o is large enough to make od finite, i.e., precisely

od =r1. (2.76)
With eq. (2.75) we obtain for the potential difference or voltage

5o =99 -2 2.77)

which completes the proof.

Particularly simple is the case of two infinitely wide parallel planes with
homogeneous surface charges (Fig. 2.24). For symmetry reasons, D has an x-
component depending on x only. Fig. 2.25 illustrates (a) the field of a surface with
the surface charge +o, (b) the field of a surface with the surface charge -o, and
(c) the superposition of the two fields. For case (a) we get

Dy, -D,, =o0c.
For symmetry reasons
D2x - Dlx 4
DA +o DA © D, +o
D, =2 D, =9
2x 7 lx 2
X X X
» T > —
X1 Xo X1 X2 X1 X2
D, =-2
X (&
2 DZ,\‘: - 5
(a) (b) () D,=-0

Fig. 2.25
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or
_ _GC
Dy = =D = 3. (2.78)
For case (b), in a similar way one obtains
_ _ G
Dy =Dy, =5 . (2.79)

The superposition gives a non-zero field only for the area between the two planes
and it points from the positive plane to the negative one (Fig. 2.24)

D.=-c. (2.80)
Therefore
E =_-9 2.81
. e (2.81)
and
8¢ = —E d = cd _ = (2.82)
€ g

This equation is exact even for finite distances d, while for the general case, i.e.,
when deriving eq. (2.75), an infinitesimal distance d was required.

p
dr {V >
A\ 0
”
[
_ 5 - 2

Fig. 2.26

Here is another example on how to apply eq. (2.72). To calculate the potential
at the axis of a disk, uniformly coated with dipoles (Fig. 2.26). One needs to find
the solid angle Q. From eq. (2.70), follows for z>0:

_ _ o 2mr
Q = [dQ = Ior_2+22 cos0dr
_ j’o 2nr zdr  _ anro rdr '
072+ 72 /r2+22 0 /r2+223

Now, substituting 72 as a new variable. Then dr? = 2rdr and thus
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2

O = 5drr 2 7o
N ms
retz re+z=0

= 21:(1— z J = 2n(1 - cos0,)

/r% tz
For z <0, on the other hand,

E

j = 27{—1— z j :
/r%-i-zz r%ﬁ-z2

Q= —27{1 -

So

ZL(I z J for z>0
€0 /r(2)+z

i[—1— z J for z<0
28 r(2)+z

There is a discontinuity at z = 0, where ¢ jumps from —t/(2¢;) to t/(2¢),
which results in an overall discontinuity of t/¢,, as expected. The electric field on
the axis is

op
E =_9¢
z Oz
and is calculated to be
2
-
E = - 0

. R
28y [r2+ 22

E_ vanishes when r, approaches infinity, as necessary. Now, we come back to the
case of Fig. 2.24, for which the field is non-zero only inside the layer.
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2.5.4 Line Dipoles

It is possible to cover lines with dipoles, which is illustrated by a simple example.
According to eq. (2.46), the potential of an infinitely long, straight line charge is

=4 nl.

21180 rp

Two parallel line charges in close vicinity form a line dipole (Fig. 2.27), with the
potential

AL S R
¢ 2mg,, g 2me, g
r —9
= Lt - L=
27[80 r 2n80 r

Il
I
V)
a
m’Q
(=)
.
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which holds as long as
B1 = ¥p2 T -
We now require that
d«r,
and
d«r. .
Then 6,~0.~0, 8 = r.—r,~d-cos® «r_. Furthermore r,~r_ ~r, and

because the power series of In(1-x) = —(x+x2/2+...) for -1<x<1, ¢
becomes

g 6 (gd)cosO
27T80r~ 2meyr

~

(2.83)

Fig. 2.27
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Fig. 2.28

where (gd) is the line dipole density (dipole moment per unit length) and ¢ is the
potential of the infinitely long line dipole. The result should be compared to
eq. (2.60), which represents the potential of a dipole. When comparing with
eq. (2.60), replace p with (gd), use 2r instead of 47, r instead of 2, and let
r; = 0. We should keep in mind that 7 in eq. (2.60) represents the distance of the
field point from the dipole, while in eq. (2.83) r represents the perpendicular
distance to the line dipole.

From line dipoles that are parallel to each other, one can construct cylindrical
dipole layers (Fig. 2.28 and Fig. 2.29 ).
The surface density of the dipole moment is

T(s) = d—q—(dsd)

and thus the potential becomes

_ jrcoseds

N 2n80r




where the integral from A to B is evaluated along the contour C. Now,

do, = S0s9ds
r

2.5 The Ideal Dipole

71

is the angular element, under which the line element ds appears when looking from

the field point. Therefore

o = anoirda
If © is constant, this gives
0= U
2mg,,

(2.84)

(2.85)

These two relations are equivalent to eq. (2.71) and eq. (2.72), respectively. There,
we discussed general spatial problems, while here we are dealing with the
cylindrical case, which is also called the plane case because it is independent of

one of the spatial coordinates.

When the contour C is closed, the result is a closed cylinder. If, furthermore,

T is constant and the dipoles point outwardly, then

{2n inside
o =

0 outside
and thus
- X inside
0 outside.

As expected, there is the discontinuity of the potential

/€.
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2.6 Behavior of a Conductor in an Electric Field

One finds in nature two quite distinct types of materials. There are materials
containing charges which can move freely and there are materials where this is not
the case. The former are called conductors, while latter are called insulators (or
dielectrics). Consider the behavior of materials in the presence of an electric field
for the case of a conductor. We refrain from discussing this broad classification
further, but limit our discussion to the consequences for conductors in an electric
field, and then tackle the problem of dielectrics in an electric field.

A conductor in an electric field experiences a force, which is actually exerted
on the free charges within it. These start to move, and their motion will cease only
if

E=0

everywhere inside the conductor and

o = const | 20

The surface of the conductor has to have the same potential everywhere, i.e. it has
to be an equipotential surface. Outside of the conductor, E will not vanish. Its
tangential component has to be zero at the conductor surface

E, =0 |, (2.87)

as otherwise the surface would not be an equipotential surface. The perpendicular
component £, of E, however, will not vanish. There will be surface charges at the
surface, such that the external field does not penetrate the conductor, i.e., by
eq. (2.74) we obtain

D, =gk =0c | (2.88)

n

To illustrate this, consider this simple example: We choose an infinitely wide,
conducting plate within a uniform electric field which is perpendicular to the
surface of the plate (Fig. 2.30). Depending on their sign, the free charges move in
the direction of the field or opposite to it, until they reach the surface of the plate.
This is so, regardless of whether there are only negative, positive, or both types of
charges available. The result is a surface charge which is positive on one end, and

Fig. 2.30



2.6 Behavior of a Conductor in an Electric Field 73
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Fig. 2.31

negative on the other. The inside is free of any field if ¢ = +¢,£ . The field of the
surface charges exists only inside. It originates at the positive charges (sources) and
ends at the negative charges (sinks). i.e., it is exactly opposite to the external field
but of the same magnitude. The external field is thus identically cancelled. The
superposition of the fields of Fig. 2.30b and Fig. 2.24 results in Fig. 2.30c.

The thereby created surface charges are also called influence charges. They
can be used to measure the electric field by magnitude and direction. A pair of
conducting plates does the job. The plates are brought into the field while in
contact with each other. In the field, they are separated, and by trying different
orientations, one can find the direction of the field (Fig. 2.31).

To calculate the field created by a conductor, together with an external field in
full generality is rather difficult. In the following, we will solve some problems that
are, however, rather easy to solve.

2.6.1 Metallic Sphere in the Field of a Point Charge

By now, we have already calculated a number of fields and in principle, we know
their equipotential surfaces. One may imagine each such equipotential surface as
the surface of a conductor. In light of this, we have already solved many problems
of this kind. In Section 2.4, we have found that the equipotential surface @ = 0 of
two point charges with opposite sign is that of a sphere (Fig. 2.10). Take a sphere of
radius 7, centered at the origin of a Cartesian coordinate system, and a charge O,
to be located at (0,0,z;). Because of eq. (2.54) and eq. (2.55), a second charge O, at
location (0,0,z,) will make the sphere an equipotential surface provided,
72
7, ==, (2.89)
1
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AZ

charge Q

image charge Q,

7\ stagnation point

s

Fig. 2.32

)
0, = -0, Z_1 . (2.90)

The charge O, at location (0,0,z, ) is a fictitious or image charge. Given Qq at
location (0,0,z,), this image charge is necessary to create the very field outside of
the sphere that we are looking for. There is no field inside the sphere. The field
ends at the surface of the sphere at the correlating surface charges, which are
determined by equation eq. (2.88). Integration of these charges over the surface of
the sphere yields the charge O,. On the sphere’s surface end all those field lines
which would end at Q,, the so-called image charge, if there were no sgohere. The
resulting configuration is illustrated in Fig. 2.32. The point (0, 0, z, = 7 /z,) is the
image point of the point (0, 0, z,) with respect to the sphere. From this stems the
term image charge and the method to solve this kind of problems is called the
method of images.

One can modify this problem slightly, and require that the sphere holds a
given charge Q. The solution results from recognizing that if one places an
arbitrary charge at the center of the sphere its surface remains an equipotential
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Fig. 2.33

surface. All we need to do is to superimpose the field of a point charge (Q - O)) at
the center to the initial field of Fig. 2.32

A charge in front of a plane, conducting wall represents the limit of the sphere
with an infinite radius r,. It results from eq. (2.89) that the mirror or image charge
has to be located behind the wall, in the exact same distance as the real charge in
front of it, i.e., in its image point and that O, = —Q,. The charge location
according to Fig. 2.33 is

zp = rotdy
zp = rg=dy,
and, therefore by equation eq. (2.89)
o
Zz = r‘ ) = )
’ Ty + dl
_ s
d b
1+
-

If 7, » d, , then in the 1% approximation

o der(1-1) = g
%) Ty 27T - r 1

rS
that is
a’2 ~ a’1 .

It is plausible that thereby the boundary condition of constant potential or
vanishing tangential field components is met at the wall (Fig. 2.34). It is also
possible to apply this method to charges inside an angle as shown in Fig. 2.35. In
this case there are the charges +Q at for example (a,b,0) and (-a,-b,0) and the
charges -Q at (-a,b,0) and (a,-b,0). One can think of the field in the 1% quadrant
(there is no field in the other ones) being generated by those four charges and it is
easy to verify that the planes xz and yz are equipotential surfaces, which is quite
plausible.
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Of course, it is also possible to place several charges, for example, in the
vicinity of the sphere of Fig. 2.32. This requires multiple image charges, and all
fields need to be added. In particular, it is possible to add another charge -Q; at
(0,0,-z;) besides the charge Q; at (0,0,z;). This requires one to consider two image
charges: O, at (0,0,z,), and another one -0, at (0,0,-z,). In the limit of Q; and z;

Fig. 2.34 =

y
7
-Q ° +Q
] ‘\\ X
7
%
Qg ° Q

Fig. 2.35
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Fig. 2.36

approaching infinity then O, needs to approach infinity in the same manner, while,
z, goes to zero. That is to say, the two image charges in the said limit result in a
dipole. The field of the two charges £Q; in the vicinity of the sphere can be
regarded as being uniform. This suggests that the problem of a sphere in a uniform
field can be solved by means of a fictitious (image) dipole at its center. This leads
us to the next example.

2.6.2 Metallic Sphere in a Uniform Electric Field

Based on the just mentioned assumption and using the quantities from Fig. 2.36,
one makes the following Ansatz:

_ pcosO

> a, o

4n80r
_ peos® 60
4 a, o
TCSOI”

E, . is the externally applied field, which at a sufficiently large distance, is not

a,»

distorted by the metallic sphere. The potential is generated by the dipole according
to eq. (2.60) and by a part that belongs to the uniform outside field. This
assumption is confirmed if we can choose p such that ¢ is constant for all » = r:

_ _ pcosO
Q= Qg 4—n8 > E, ,recos6 .
0"s
¢ will, in fact, be constant for » = r,, provided one chooses
p= 4n80rS3Ea o -
Thus

rs
¢ = Ea’OO ;Efr cosO . (2.91)

This allows one to calculate the components of E :
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field maximum is located
at the poles of the sphere

separatrix

stagnation points
at the equator of the sphere
(“stagnation line”)

Fig. 2.37
,,3
E, = Ea’w(z-—;- + 1] cosO , (2.92)
r
r3
Ey=E, -%—1 sin@ . (2.93)
r

Ey = 0 at the surface of the sphere ( = r,). E, determines the surface charge:
G = ao(Er)r:rS = (Dr)r:rs = 380Ea,oocose . (2.94)

This configuration is illustrated in Fig. 2.37. The maximum field is £ = 3E,
and is located at the two poles of the sphere. The behavior at the equator is strange,
insofar as it consists entirely of many stagnation points forming a so-called
stagnation line. The field lines there form a tip, i.e. they have no unique direction,
which is, of course, only possible at stagnation points. Furthermore, one can show
that they form an angle of 45° against the equatorial plane (Fig. 2.38).

This problem can be generalized, which gives rise to the question how this
picture might change if the sphere carried the charge Q. Thus far, the effect of the
sphere was simulated by a fictitious dipole, i.e. the charge on the sphere vanishes,
which can also be obtained when integrating ¢ over the surface, eq. (2.94). So, one
only needs to place an additional charge in the center of the sphere. This solves the
problem because it also creates a constant potential on the sphere.

Instead of eq. (2.91), we now use

r3 Q
¢ = Ea,w(r—;r cos0 +

4n80r

Depending on Q, very different field configurations result, which are presented
here without proof. Consider:
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45°( \45°

45° J 45°

separatrix

Fig. 2.38

0

Case 1: if ———
4na0rs . 3Ea’OO

<1,

then the stagnation lines are at circles of equal latitudes of the sphere, as shown in
Fig. 2.39.; and

Case 2: if 0

0 |-,
4negr? - 3E,

then the stagnation lines are degenerate and the stagnation points of Fig. 2.39 move
to the poles of the sphere; and

9

2.
dneyrs - 3E,

Case 3: if >1

then the stagnation points detach from the sphere, and move out into the field along
the axis through the poles (Fig. 2.40).

& N V%/
Q<0 Q>0

Fig. 2.39
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(equipotential
surface
S through S)
S
Q<0 Q>0

Fig. 2.40

2.6.3 Metallic Cylinder in the Field of a Line Charge

Consider a metallic cylinder to be located within the field of a uniform line charge
with its axis oriented parallel to the line charge (see Fig. 2.41). One can think of the
overall field outside the cylinder as being created by the given line charge ¢
(outside the cylinder) and its image charge, also a line charge -q (inside). The
product of the distances of the two line charges from the cylinder axis equals the
square of the cylinder radius, i.e. the piercing points of the two line charges emerge
by reflection at the circle » = 7., (where 7 is the radius of the cylinder). Thus

. = 52
X1 Xy = TI¢

The proof is easy. Based on eq. (2.46), one first calculates the potential of the two
line charges at a field point (x,),z)

g (line charge)
> x

X1

image charge (line charge)

metallic cylinder

Fig. 2.41
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¢ =- .
27180 g Znso rp 21‘580 r

where
r% = (xfxl)2 +y2

and
r2)?
13 = (x—x,)2+y? = [x——cj +y2
X

On the cylinder wall we have

X24y2 =2

and thus
2xr2 ¥4
5 xz— C+—§+y2
BN
2 2 2 2
i xX*—=2xx txy+y
2 4
5 2xrc ré
e~ M) 2
Y1oooxy _re
= ——— = — = const
r%—2xx1+x% x%

Therefore r,/r,, and thereby also ¢ are constant on the cylinder wall. The
location of all the geometrical points for which the distance ratios r,/7; from the
two fixed points is constant, as shown in Fig. 2.41 These are known in geometry as
the circles of Apollonius. The circular cross section of the cylinder constitutes one
of those circles.

2.7 The Capacitor

Suppose there are two conductors (for example metals) with a charge of opposite
sign (Q and -Q), then a field will form between them whose force lines originate on
one surface and terminate on the other. Both surfaces are equipotential surfaces, i.e.
a well defined voltage V between the two bodies is set up. This voltage is
proportional to the charge Q. The ratio |Q]/|V] is a geometric factor called the
capacitance C. The whole configuration is termed the capacitor.

It is particularly simple to calculate the case of a plane, parallel plate
capacitor when one makes the approximation that the plates extend to infinity,
thereby neglecting fringing effects (Fig. 2.42). Then

E=S%
€o
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e

Fig. 2.42 W%

le— +
|-+

-« d P

and
d
=2
€0
The charge is
0 =104,
where 4 is the area of the plates. Therefore
c_lo_ o
N~ d

(¢

E

—O

(2.95)

One could also define the capacitance of a single conductor by using the value of
its voltage against a point at infinity. Consider a sphere of radius r, with a voltage

between its surface and infinity

0

41'[801"

so that

_lal
“Tm

= 4n80r

(2.96)

Two concentric spheres form a spherical capacitor (Fig. 2.43). For this case,

the voltage is

and therefore

Fig. 2.43

©
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r.r
c=19 dngg—=— |. (2.97)

|V‘ r()_ri

If one lets r, and r; become very large, but keep r,—r; = d to be very small,
then

2 gpd
C = 47[803 = —d—

and the case of the parallel plane capacitor is recovered.
Two concentric cylinders form a cylindrical capacitor. Here

. r r
V= len(—l +Lln(—o -0 1n(—o)
2meyl 2ngyl N\ 2nggl \r;

and thus

C = u = 27e l(lnz)il (2.98)
7 0 - . )

This is exact only for a cylinder of infinite length /, which would make C also
infinite. Therefore, it is more practical to express the capacitance per unit length.

7 \—1
€ 2n80(ln—o) .
[

In spherical or cylindrical coordinates, the electric field has a spatial dependency
according to eq. (2.2) and eq. (2.45):

spherical cylindrical
Electric field in general £ — 0 B - 0
47'cgor2 27[8011"
E has its maximum at the inner _ 0 _ 0
electrode max A 2 max "~ 2megylr;
0" !
Another way to write this is as © v v
follows: max 41'5801"1-2 max. 2meglr;
_ = L
ri(ry=rp) rIn=2
1 7.
1
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spherical cylindrical
For a given voltage and outer radius p r r
. . 4 o __ [
r,, the maximum of the electric ry = 5 ry = = o718

field £,,,, takes is lowest value if
O0E, ./ 0r, = 0,i.e.,for

This is of practical value when one wants to optimize capacitor structures.
The unit of capacitance is the Farad. The definition of C determines

as already mentioned in Section 1.13.

Two conductors form a capacitor not only when separated by vacuum, but
also if the separating medium is an insulator. In this case, one finds that the
presence of the insulator permeating the gap increases the capacitance by a
characteristic factor. With the same charge, the result is a reduced voltage, or a
reduced electric field. The voltage vanishes completely inside a conductor. Inside
an insulator it is just reduced. Both situations have a similar cause. There are also
charges inside an insulator. They, however, can not move about freely. The result is
a limited shielding of the external field. This will be discussed in the next section.

The concept of capacitance can be generalized for systems that consist of
several conductors. This will be covered in Chapter 3.

2.8 E and D inside Dielectrics

All matter consists of atoms, which themselves consist of a positively charged
nucleus and negatively charged electrons. Inside a conductor, some of the electrons
are free to move, and this leads to the effects described the last two sections. This is
not the case for an insulator (dielectrics). Nevertheless, a certain displacement of
positive charges versus the negative ones is still possible. If, in a medium, the
centers of positive and negative charges of its atoms or molecules do not coincide,
then they acquire a dipole moment. Two cases are of importance.

1. Frequently, atoms and molecules have no initial dipole moment in the
absence of an applied external field. However, an applied external field
exerts a force on the charges, which deforms the atoms (or molecules),
creating a dipole moment (Fig. 2.44). The so created dipole has its own
field which tends to weaken the external field. This process is termed
polarization of the dielectric (see also Section 2.5.2). The quantitative
measure is the resulting dipole moment per unit volume. The general
assumption is that the polarization is proportional to the electric field.

P = gy E (2.99)
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nucleus (positive) nucleus (positive)
E
applying
a field
>
electron cloud (negative) electron cloud (negative)

Fig. 2.44

This is not necessarily exact, but often times provides a suitable approx-
imation, provided that the magnitude of electric field is not too large.

It is also possible that the atoms or molecules possess a “natural dipole
moment”, i.e. their respective centers of charge do not coincide, even in
the absence of an externally applied field. Nevertheless, in the general
case, the substance is still not polarized without an external field. The
reason is that the dipoles are typically randomly oriented inside the
material, and cancel each other, so that the system has no net dipole
moment. When an external field is applied, a torque is exerted on the
dipoles which tries to orient them along the external field. This may not
be entirely successful. Thermal motion continually attempts to destroy
this order created by the outside field. The orientation along the external
field is therefore only partial, and less complete the higher the tempera-
ture. However, the polarization is still, approximately proportional to the
external field. That is, equation eq. (2.99) for the polarization applies for
this case as well.

There is also the case that the dipoles maintain their orientation without

an external field. Such a substance is called permanently polarized. This
is then also referred to as electret, in analogy to a permanent magnet.

The factor ¥ in eq. (2.99) is called the electric susceptibility. Depending on
whether the material corresponds to case two (or one),  will be (not be) a function
of temperature.

We now turn to the case of a polarized, plane plate (Fig. 2.45). An outside
field E,, is applied perpendicular to the plate. As a reaction, an opposing field £, is
created inside. The resulting net field inside is weakened:

E = E,+E,

Those fields are all uniform because of the plane geometry. Therefore, the
polarization

P = gyyE,;
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is also uniform. Notice that E; was used. The reason is that equation (2.99) uses
the net field at the particular field point. The uniformly polarized dielectric carries
the surface charge o = P, at its surface, as discussed in Section 2.5.2. Also, if
we just take the magnitude

D, = +c = +P

g
or
D enx E.
E --g8-9_,P_ Tk L = +yE,
o o %o €o €0
so that
E; = E,—yE;
ie.
E[l
E;, = (2.100)
1+
and
N
p 1+XE11 . (2.101)

Now, we may write
SOEa = 80(1 JFX)EI = gogrEi = SE. . (2102)

1

Here, ¢ is the so-called dielectric constant or permittivity of the insulator and ¢,
the so-called relative dielectric constant, defined by

€ = g8, (2.103)

Note that ¢, is dimensionless and defined by

Finally, one may complete the definition of D, which up to now was only defined
for vacuum. For linear media we define the electric displacement as

D = ¢E (2.105)

Fig. 2.45
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Thus, because of eq. (2.102) D, = D,. In the general case, when E is not
perpendicular to the insulator surfaces, we have to restrict this statement to apply to
the normal components of D:

This is an important statement. It gives insight into the meaning of the definition of
D . The electric field intensity is discontinuous at the boundaries of the insulator, in
such a way that only the normal component of D remains continuous. Thus, the
influence of polarization is taken into account automatically.

There is no absolute necessity to make a distinction between , E and D . Not
to introduce D and solely work with the relations for vacuum is also possible. This
requires an explicit consideration of all charges, including the surface charges due
to the polarization. These cause a discontinuity in the normal component of E . The
above definition of D, in contrast, considers these effects implicitly. If there are
additional surface charges that are not caused by polarization, then these have to be
taken into account explicitly in any case. To better distinguish those charges, the
terms free charges and bound charges are used. Polarization causes bound charges.
Accordingly, one introduces two charge densities

P = Phee T Pbound — PrT Py - (2.107)
Then
D = ¢E = gy, E = gy(1+y)E
=g EtegpyE = ¢E+P,
ie.

This relation shall generally apply, i.e. D is always defined by eq. (2.108), and is
even done in the case of a permanent polarization (electret). Applying the general
definition (2.108) to the special case of linear media results again in (2.105).
Taking the divergence of (2.108) gives

Ve(ggE) = p = Prtpy = VeD— VeP |
i.e., with (2.66)

VeD = p, (2.110)

To avoid confusion here requires one to make a clear and conscious distinction
between free and bound charges. This means to either calculate the electric field by
considering all charges (free and bound), or to calculate the electric displacement
from the free charges alone.

Note that one is still dealing with electrostatics (i.e. the time independent
case) only. Nevertheless it shall be noted, that after applying an electric field, it
takes some finite amount of time before the system reaches its final state. If one

and
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+Q = erw

-0

applies alternating electric fields of sufficiently high frequency, then the
equilibrium condition can not be reached anymore, and so y and ¢ are actually
frequency dependent. So far, we have been dealing only with ¢ and € in the limit
of zero frequency.

Moreover, many dielectrics are not isotropic, i.e. their polarization depends
on the direction of the applied electric field and shows a preference for certain
directions. In this case, however, ¢ is no longer a scalar, but a tensor. Eq. (2.105) is
then replaced by the more complicated expression

Dx - 8)chx + 8xyEy * szEz

\w)

Fig. 2.46

Dy = SyxEx+8nyy+8yzEz (2.111)

D = SZ.XEX + SZyEy + 8ZZE‘Z

z

or in tensor notation

Dok @

€ is a quantity with nine components whose individual components behave like
products of vector components (e.g., during a transformation). The scalar
multiplication of a tensor of rank two (that is € ) with a vector results in a vector.
Note that € is a symmetric tensor, thus

6y = £ (2.113)

Ifin (2.100) we set X = o, then E, = 0. This suggests that in some respect,
conductors behave like dielectrics with infinite susceptibility. The plausible reason
is that a conductor has free charges which, when an electric field is applied, creates
arbitrarily large dipole moments.

2.9 The Capacitor with a Dielectric

One is now able to understand why a dielectric increases the capacitance of a
capacitor. As shown in Fig. 2.46, there are charges £Q on the plates, and the space
between them is filled with a dielectric of permittivity € . Then

|G|:|—Q—|:D:8E:8U‘/‘—
A d
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and therefore

||IQ/|| - 83_ 8083 (2.114)
Comparison with eq. (2.95) reveals that C has increased by the factor ¢,. This
results quite plausibly from the fact, that for a given charge on the plate of the
capacitor, the bound charges on the surfaces of the dielectric reduce the total charge
and thereby also the electric field.

As another example, let us analyze a plane capacitor with a layered medium
(Fig. 2.47). The voltage is

M= SEd, .
1
On the other hand
sl.El. =D

is the same everywhere. Therefore

D dz'
M =524 -p 35
e ;&

-oxg- 45T,
) _ % _ ;:i 2.115)
Q %%%/////////////é S

Fig. 2.47
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2.10 Boundary Conditions for E and D and Refraction of Force
Lines

Here, we analyze the boundary that separates two regions. Perhaps it is the
boundary of two materials of different permittivities, or perhaps it carries a surface
charge etc. The conditions that have to be met at such boundaries result from
Maxwell’s equations. We start with Faraday’s law, eq. (1.68)

0

VxE = - 9B .
x ot

Integrating about the small area 4 shown in Fig. 2.48 gives
IA VxE e dA = {;E eds = ds(E,,—E,,)

dipole layer

Fig. 2.48 Fig. 2.49

The reason is that the area becomes arbitrarily small when its perpendicular extent
approaches zero. This implies that there is no voltage along the infinitesimal path
element perpendicular to the boundary. This condition is not met for a dipole layer
which is shown in Fig. 2.49, in which case the relation becomes:

T(S T(S
§E o ds = Eths+(—2)7E1,ds7 (1)
€ €o

=0.
The reason is that the dipole layer causes a discontinuity of the potential in the
direction of p by the factor t/¢, (2.77). Thus

T(s1) —1(s,) _ T(s)) —(s; +ds)

€9 €

ds(Ey,—E) =
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dipole layer

Fig. 2.50

ie.,

Lt
80ds

Ey~E, = -

iy (2.116)

t
This is a special case. It describes the discontinuity of £, along a given direction
on the dipole layer as shown in Fig. 2.49. E,,, E,, are the tangential components
of the electric field in this direction, where dt/ds is the component of V1 in this
direction whereby Vt is the two-dimensional gradient in the plane of the dipole
layer. We can lift this restriction on the direction by writing

1
Ey,~E,=- =Vt | (2.117)

€

Equation (2.116) results from this by scalar multiplication with the unit vector in
the chosen direction.
Without the dipole layer, one obtains as in the beginning of this section,

The tangential component of E has to be continuous, as long as there is no dipole
layer present.

A boundary condition for D follows from eq. (1.23) or its equivalent eq.
(1.20) namely eq. (2.74), already derived in Section 2.5.3,

‘ D,,-D,, =oc ‘ (2.119)

In agreement with our discussion of Section 2.8, this is generally true only, if o
merely represents the free, but not bound charges. The normal component of D is
continuous only if 6 = 0. Otherwise, it too is discontinuous.

The boundary conditions for D and E induce kinks (refraction) of the
electric lines of force when entering another medium, or when passing through a
dipole layer, or through a surface charge. With Fig. 2.50 it follows:

1drt
Ey = Ej,——=
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and
_ Dy, _ Dyt
E2n - < <
2 2
gEy, to
&
So
1dt
Ey———
E,, gyds
tana, = T =
€
2n _lEln + o
) €
and
E
tana; = —lt
Eln
ie.
&
tano enE . ds
t 2 _ of1y (2.420)
ano €
1 &, o
& &Ey,
Specific cases of this relation are
1. Refraction at a boundary where ¢, #¢,,6 = 0
tana, €y
= = (2.121)
tana €
2. Refraction at a surface with free surface charges where (¢, = €, = g;)
tana
2 - 1 (2.122)
tana; |, _oO
L1,

Generally, if there is a dipole layer, the electric field is not only refracted, but also
rotated by the angle B with respect to the plane of incidence. Using eq. (2.117) and
the illustration shown in Fig. 2.51:

= Elt* lVr
€

E2t

and therefore

1
Eypy = Eyy— %(VT)H
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plane of | E, Ey,
incidence | Oy
| Ey, B boundary
B =
Ey | ™~ 7
E,, |
| a2 | |
E, '
: Y _NL .
/'/’ E, | 7
e - - . _=
Fig. 2.51
E = ! \Y%
20l T~ T ;)( -
This results in
E
tanf = 2t
2t ||
and
E
tanoc2 = ﬁ.
E2n

2.11 A Point Charge inside a Dielectric

2.11.1 Uniform Dielectric

Consider a point charge at the center of a hollow sphere made up of a dielectric
material (Fig. 2.52).
For the entire space,

b. 0

= r.
47p3
For vacuum
E = Q 3T
dmegyr

and inside the dielectric, hollow sphere
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Fig. 2.52

E_ 0  __0

= = r.
3 3
dner 4TC808r}’

The associated polarization is

e —1 0
P =¢,E = = r
oX &, 4nr

and, as will be shown later (in 3.42)

1 a( &1 0 )
= _VeP = ——|r rl =0 5
Po r2or €. 4nr3

which means that there are no bound volume charges inside the dielectric.
Nevertheless, there are bound surface charges, specifically

e —1
- = Q2 for r = r, ,
& 4nrq
G, =
b
g —1
+ L Q2 for r =r,.
€, 4nry

Fig. 2.53 illustrates the behavior of D and E as functions of r. Now we let r,
approach zero, but r, shall go to infinity. As a result, one finds the net charge
inside

1 -1
0-=0- L9 1 0o-9

2
€, 47””1 €, €,

This means that the charge appears to be reduced as a result of the bound charges
by the factor €, . The overall field, where now the dielectric fills the entire space, is

go_ 0

3T
47taoarr



2.11 A Point Charge inside a Dielectric 95

_ o

4meyr?
i.e., the field is reduced relative to vacuum by the same factor ¢,, as was the
charge.

2.11.2 Plane Boundaries between two Dielectrics

Let a point charge reside in a space that is filled with two different dielectrics that
are separated by a plane boundary (Fig. 2.54). Material 1 (&, ) occupies the half-
space x > 0; material 2 (&, ) occupies the half-space x < 0. One can show that
1. The field in half-space 1 can be expressed as the superposition of the
field of Q and the field of a fictitious charge (image charge) Q’, located
in half-space 2 at the same distance (a) from the boundary as Q.

2. The field in half-space 2 can be expressed as the field of the fictitious
charge 0", located at the same point as Q.

DrﬂEr

r ry Tr

Fig. 2.53
€, 24 y
a
Q")
_ _.’_"_ i — . X
Q a
€

Fig. 2.54
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This justifies the following Ansatz.
L( 0 . 0

AN fx—a)+y2+22 Jx+a)2+)y2+ 22

¢ =

(P _ 1 ( QIV )
From this follow the electric fields

O(x—a) + Qx+a)
Ja-a)?+32+22°  Jxta+y2+ 22
E1=—V(P1=41 : Qy 3+ oy 5

T | J(x—a)?+y2+220  J(x+a)?+y?+z?
0z + Q-
M-y +y2+22 fxrap?+y2+22)

Q"(x—a)
J—ay?+y2 22
_ _ 1 ' Qny
E, 1 3
QHZ
a2+ 2+ 22
The tangential components of E, that is £, and E_, as well as the normal

component of D, that is ¢E, have to be continuous on the boundary x = 0. E, and
E_, are continuous if

0+0 _ 0

€ €

and eE, is continuous if

0+ =0,
One may verify that the Ansatz is correct by showing that the appropriate choice of
0O’ and Q” fulfills the boundary conditions everywhere on the boundary x = 0, i.e.,

for all y and all z, which is not at all self-evident. Calculating Q" and Q” from these
two equations gives

282
0" =0

Q7 always has the same sign as O has, while O’ may have either one. In particular
for ¢, = ¢,, we find Q" =0 and Q" = Q, as expected. In the limit of ¢,
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approaching infinity, one finds O~ = -Q, the same result as for the image charge at a
conducting plane. As already mentioned, a conductor behaves in many ways like a
dielectric with infinite permittivity. We will return to this topic in a later section.

/

. -

€ 1 &
i ZZ
Fig. 2.55 Fig. 2.56

=

Z

€, <8,

//////////////////%

\

The field configuration for g, < ¢,
is illustrated in Fig. 2.55 and for €, > ¢, in Fig. 2.56. The curvature of the force
lines depends on the sign of Q'. For ¢, <€, and 0> 0 wehave Q'<0,ie. Q and
Q' attract each other, which results in field lines as shown in Fig. 2.55. For €, > ¢,
and O >0, however, we have 0'>0, i.e., Q and Q' repel each other, which
results in field lines as shown in Fig. 2.56.

2.12 A Dielectric Sphere in a Uniform Electric Field

2.12.1 The Field of a Uniformly Polarized Sphere

In order to solve the problem of a dielectric sphere, it is useful to consider the
electric field of a uniformly polarized sphere. When r, is the radius of the sphere
and P its uniform polarization, then the overall dipole moment is

41‘51"3
p=PV= 3‘P. (2.123)

One may think of a uniformly polarized sphere as being created by two spheres,
charged with opposite charges that are slightly displaced against each other
(Fig. 2.57). When %p is its volume charge and d the displacement, then

P =pd.
Outside of the sphere, the field is that of a dipole at the origin, namely
_ peosO _ Prlcos®

2.124
4mg,r? 3g,r2 ( )
0 0

This is still correct for the surface of the sphere, where
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_ Prscose _ Pz (2.125)

¢ = P 3g, 3gy

By means of theorems about the uniqueness of solutions of potentials, which we
will deal with in Chapter 3, it is possible to show that the potential inside the sphere
has to be

- Pz (2.126)
3g
There is another way to prove this without using those theorems. The components
of E at the sphere’s outer surface are

E = 2pcos® _ 2Pcos6
4n80rs3 3¢,

Ey = psin® _ Psin® , (2.127)
47‘C807”S3 38()

E,=0

which results from (2.63). The surface charge at the sphere’s surface (bound
charges due to polarization) is

G, = PcosO . (2.128)
This means that E,. decreases by (Pcos0)/€, when passing through the surface

from the outside towards the inside of the sphere, while the other components
remain unchanged. At the inside surface of the sphere, one therefore obtains

E, _ PcosO
3¢,

Ey = Psinf (2.129)
3¢,

E,=0

Consequently the electric field E written in terms of its Cartesian components is

! y

di TR
+
' /K " x

Fig. 2.57
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= E,sinOcosg + EgcosOcosp = 0

= E,sin0sin@ + EgcosOsing = 0

E, = ErcosefEesinG = 73183—
0

y (2.130)

So, E has only a z-component which, furthermore, has the same value everywhere
(on the inside surface). The inside of the sphere is free of (bound) volume charges
and we therefore conclude that the whole inside space is filled with the same field.
The related potential is ¢ = Pz/3g,, as was already suggested. Also notice that in
connection with eq. (2.128), a conducting sphere within a uniform electric field
carries a surface charge proportional to cos0 (see .eq. (2.94)). Obviously, the field
of the surface charge identically cancels the external field, i.e., it creates a uniform
field inside the sphere. Outside, it creates a dipole field, as we have also seen when
analyzing the conducting sphere. We obtain the same results when we apply these
results to the current case.

Summarizing, we may state that a uniformly polarized sphere (polariza-
tion P) creates an electric dipole field outside and a uniform electric field

inside —(P/3¢g,).

This provides the field of a permanently, uniform polarized sphere (i.e., that of a

uniform electret). The field in its interior is
P_2
D=P+gE=P-==72P.
b0 303
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N7

i

D E
Fig. 2.58

Here (Fig. 2.58), D and E point in different directions: they are anti-parallel, not
parallel as usual. Furthermore, a remarkable fact is that (as always in electrostatics)
E is irrotational but not source free, while D is source free but not irrotational.

Besides spherical bodies, only ellipsoids have such simple characteristics.
The general relation between P and E or D and E, respectively, is rather
complicated. In particular, D and E may point in entirely different directions.
Fig. 2.59 illustrates the fields of a uniformly polarized cuboid. On the inside of it,
the fields of D and E have very different shapes. Of course, on the outside, there is
the usual relation between E and D: D = ¢,E.

So far in this section, we have not asked what causes polarization. It could be
due to permanent polarization as illustrated in Fig. 2.58 and Fig. 2.59. It could also
be due to an external, uniform field, which then would need to be considered as
well.

=N =\ ==

-
—

Fig. 2.59
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2.12.2 An Externally Applied Uniform Field as the Cause of Polariza-
tion

When a sphere is exposed to a uniform field, an additional field is created as the
sphere is polarized. This field needs to be superimposed onto the original field. As
we have just seen for uniform polarization, the internal field is uniform as well.
Uniform polarization would thus cause an overall uniform field inside, which on
the other hand causes uniform polarization. We may therefore state that a uniform
electric field uniformly polarizes a dielectric sphere. Using the relations from
Fig. 2.60, one is now able to write

_ P _ goXE;
R T T
0 0
from which one finds
_ 3 3
E, = E,, Try Egow 554 =l (2.131)
Furthermore,
3e,
Di =D, » 2+_8r (2.132)
and
3e0% g —1
_ ot _ r
P=E, w57~ Ean3t - (2.133)

2.12.3 Dielectric Sphere (¢;) and Dielectric Space (c;)

Let us generalize the previous problem some more. The space outside the sphere
shall now be a dielectric as well. Now, the field outside consists of a, so far,
unknown dipole field and the uniform field E i.e., we may write

a,

\V E,.

Fig. 2.60
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= 2Cc056+Ea _cosh
4Tcsor3 ’
_ Csinb . 2.134
Eea = 2 3—Ea,ws1n9 ( )
nEYr
EW =0

C is a constant that is initially undetermined. It depends on the polarization of
both, the outside space as well as the inside of the sphere. Inside, we have the yet
undetermined uniform field E;, i.e.,

E,. = E;cos0
Ey; = —E,sin® (2.135)
ERD!' =0

One can show that with the proper choice of C and E,, all boundary
conditions at the sphere’s surface (» = r,) can be fulfilled. Only this is the
justification for the Ansatz in (2.134) and (2.135). E, has to be continuous for
r=rg,le.,

Csm637Ea »SIN0 = —E;sin0 .
drmeyr;
Furthermore, also for » = r,, D, = €E, has to be continuous, i.e.,
2Ccos0
a +te, £ cos® = g;E cosO .
4n80rs3 a,© i

Solving those equations gives

3g,
= (2.136)
1 81+28a a, o
and
€ —¢€
C = 4ngy——=E 3 (2.137)
0
sl.+2z»:a a,® S
(2.136) generalizes (2.131) and both coincide for €, = g,.
The polarization inside is
€ — €
P, = go,E; = (8;,—gg)E; = 3¢ (2.138)

E
a a, o
8i+28a

and uniform in z-direction. The polarization in the outside space is not uniform, but
it is nevertheless divergenceless (source free), so that there are no bound charges in
the outside space:

Pha = ~VeP = —(g,—¢5)VeE,

a
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_ 10 5 1 (6 . D
= (g — — E + =

(2 80)(r28rr rd " rsin® aesmeE@a
=0 .

The expression used here for the divergence in spherical coordinates will be
derived later. Bound charges exist solely at the surface of the sphere, namely

Gp = Op i T 04

- (80XiEri - 8OXaEra)

r:rS
= (sl.fso)Eicosef(safso)( 2C : +Ea,w) cos0
dmgyr?
_ €&,
= 3808'_"_28 E, ,cos6 .
1 a

Outside of the sphere, this charge brings about a dipole field which corresponds to
the dipole moment

_ (4n 3) i ta
p (3 s 3808i+28aEa’°O

Siiga

E r3 .
g;+2¢, a,® s

= 4ng,

Note eqs. (2.67) and (2.123). The constant C of the previous Ansatz is just the
dipole moment, caused by the polarization of the inside and outside space, which
justifies the Ansatz (2.134) and also illustrates the formal result of (2.137).

Together, the dipole field and, the uniform field bring about the potential in
the outside space

- o rde,—¢g,
= cos| — —r| . 2.139
D, a, o 7‘28i+28a ( )

To compare this potential with that of a conducting sphere in a uniform electric
field as described by eq. (2.91) is an interesting exercise. It can be derived from the
just obtained potential by the limit ¢,/¢; approaching zero. In some way, a
conductor behaves like a dielectric in the limit of infinite permittivity. The law of
refraction (2.121) illustrates this fact. Lines of force have to be perpendicular to the
conductor surface. According to the law of refraction, this is also the case for a
dielectric of infinite permittivity.
E; in (2.136) also determines D,,

3g;

D. = D . .
i g;+ 28(1 a, o (2.140)
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AA ]A K AA AA I A K AA

AAAj A
g, = 3g;
'X A W A
E D
Fig. 2.61
A A A A
4 A
3g, = g
A A
E D
Fig. 2.62

This result allows one to sketch the fields in Fig. 2.62 (for ¢, > €;) and Fig. 2.61
(for ¢,<¢;). In all figures, D has no divergence. E, in contrast, because of the
bound surface charges is not free of a divergence. For the case of Fig. 2.61, i.e. for
(e,>¢;),itis E;>E, ,, and D;<D, .. In contrast, for the case of Fig. 2.62, i.e.
for (g, <¢g;),itis E;<E, , and D;>D, .

o0

2.12.4 Generalization: Ellipsoids

From our considerations of the plane disk discussions in Section 2.8, with uniform

polarization perpendicular to its surface, one finds that
E,=E,—+p. (2.141)
€o

The result for a sphere was
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1
Ei = Ea,ooiggp . (2.142)
We may add the trivial case of a plane disk that is polarized parallel to its surface
(Fig. 2.63), where the boundary condition causes

E,=E,~0-P=E,. (2.143)

The factor in front of P in all those equations is called the de-electrification factor.
In above three cases, this factoris 1/¢,, 1/3¢,, and 0, respectively.

We have already stressed the fact, that an arbitrarily shaped body of uniform
polarization does by no means have a uniform field inside. This is only the case for
ellipsoids and their limits (plane plates, cylinders, spheres). The proof shall not be
provided here. The equation for an ellipsoid is

22,2

a’? b* c?

An elliptical cylinder results from the limit of ¢ — o

2 2
R I

a? b?

For this case, if also @ = b, a circular cylinder results

x2+y2 = g2

For an ellipsoid with a = b = ¢ we get a sphere

x2+ylez2 = g2

S

Two parallel plates emerge when two half-axes, for example, a and b approach
infinity:

a

=

Fig. 2.63
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We shall not calculate ellipsoids in any depth here, but merely provide the results,
which may be obtained by means of the Ansatz, originated by Dirichlet, that a
uniform polarization

P= (P, Py, P) (2.144)
creates a uniform internal field
E = (-4P,, —BPy, —CP_) . (2.145)

Therefore, the vectors P and E point generally in different directions. (2.145) could
also be written in the following form

A00
E=-| 050 |P. (2.146)

00C
The three constants 4, B, C are the de-electrification factors for the ellipsoid. A, B,

C are different from each other for an ellipsoid with three distinct axes and
determined by certain integrals, for example,

_ abe " de
2 2 2V3/2(42 21/2¢ .2 24172
B0y (a”+E9)75(b7+E7) " (e +E7)

Of course, the expressions for B and C are analogous. Remarkable is that in any
case.

A+B+C =L (2.147)

€

For symmetry reasons, the relation for a sphere hastobe 4 = B = C = 1/3¢,,
confirming our previous result. For a circular cylinder whose axis is oriented
parallel to the z-axis, we have C = 0 and 4 = B = 1/2¢g. This result can easily
be derived by the method previously used for a sphere. It is an easy exercise to
convince oneself that the field outside the cylinder is that of a line dipole at the axis
of the cylinder. For a plane plate whose normal component is parallel to the z-axis,
the constants are 4 = B = 0 and C = 1/¢,, which again, is consistent with our
previous result.

Later, in conjunction with problems of magnetism, we will meet similar
factors, which are termed de-magnetizing factors.

2.13 Polarization Current

The chapter discussing electrostatic problems is not the most appropriate place to
cover polarization currents. Nevertheless, we have introduced polarization and
want to also introduce the polarization current, which results from time dependent
polarization. We start from

VeP = —p, .
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If P is time dependent, then p, has to be time dependent as well. The charge
conservation principle applies also to bound charges. If we call the related current
density g, , then according to the continuity equation (1.58), we obtain

0
Vogb+a_$b =0. (2.148)
or
0p) _
Veg,~Ve(=P) = 0, (2.149)
ie.,
0
g = 5P |. (2.150)

if we also assume that any, by (2.149) still possible divergence-free, additional
term vanishes. This current density of the bound charges is called the polarization
current density.

The overall charge density is

and the total current density is
0
g=gtg=5Pre .

To prevent misconceptions, let us discuss how this applies, for instance, to
Maxwell’s first equation (1.61).
VxH = g+ oD .
ot
There are two possible approaches. Either we explicitly consider all charges and
treat the given space as if it were vacuum, or we only consider the free charges and
consider the space to be a dielectric. The first case gives

0
g=gtg, = gf+6—tP
and
D =¢)E ,
ie.,
0 0

VxH = + P+ 2¢, E .
x &5 a0

In the second case, the current density is
g = g

and
D=¢E+P,
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ie.,
0 0
\Y =g .+ + = .
xH = g, 8P = goE

Both viewpoints lead to the same result, although care is needed in order not to
confuse those two approaches.

2.14 Energy Principle

2141 Energy Principle in its General Form

The energy principle of electrostatics is just a special case of the general energy
principle of electrodynamics which we will cover here, although it is not strictly
part of electrostatics. Starting point are the following two Maxwell’s equations.

oD
VxH = g+§ (2.151)
VxE = - OB . (2.152)
ot
We define the so-called Poynting vector.
S=ExH |, (2.153)

whose significance we will recognize in the following. We take its divergence,

VeS = Veo(ExH) = He (VXE)—E ¢ (VxH) , (2.154)
then using Maxwell’s equations:

VOS:fHO%BfEO%DfEOg. (2.155)
The significance of this equation is illustrated by integrating over a volume V:

jV(v-S)dr §S e dA—fj( £B+E0§D)drfj'(Eog)dr (2.156)

Although this equatlon will loose its generality, we will perform some more
algebra, using the relations:

D = ¢E
B = uH (2.157)
g = xkE

So far, we have used the equation B = pH for vacuum only for which p = p,.
However, we will use its generalization, which will be discussed later. Then
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E oﬂ) = g(%aEz)

o o
@ = g l 2 2.158
HoOP_ O ZMH) , (2.158)

Eeg = kE2 =&

and finally, using (2.156) gives

0 (1 24k H2)d+ &g+ §SedA = 0 2.159
o] (887 T gt )du [Fode v §S o dA = (2-159)
V V A
or using (2.155)
6(1 ), 1 2) g’ _
—| —eE“+-uH*" |+ +V = . 2.1
2128 T Vs =0 (2.169)

Those two, equivalent relations represent the energy principle in integral and
differential from, respectively. To interpret it, we apply the following reasoning.

Imagine some system that contains the energy W in whatever form. This
energy is distributed somehow within the space of that system, where it has the
spatial density (energy density)

w=4a7

dt

The energy may be distributed differently at different times, i.e., it may flow from
one point to another point. The energy per unit time and unit area that flows
through an area element is called energy flux density. It is a vector and shall be
named v. Energy W is not necessarily a conserved quantity, since one type of
energy may be transformed into another type. Of course this same fraction of
energy has to exist in that other form of energy. The transformed energy per unit
time and unit volume shall be called u. The energy balance is then:

$ vedA+ [udt = - %fwdt (2.161)
A Vv Vv

i.e., the energy that is lost from the overall volume consists of two parts. One flows

away through the surface (g& >, Ve dA) and one is transformed into another form of

energy (j'Vudr ). This equation is comparable to eq. (2.159). When written in

differential form it may be compared to (2.160). Applying Gauss’ theorem we get

I(Vov+u+é}i}>dt =0
” dt

and thus
Vev+u+d¥ = 9. (2.162)
dt

Comparison allows identification of the different terms:
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1. Sis the energy flux (density) of the electromagnetic field

2. %SE 2+ %MHZ is the electromagnetic energy density, which consists of

an electric (¢E£2/2) and a magnetic (uWH?/2) part.

3. g%/« is the fraction of electromagnetic energy that is lost per unit time
and unit volume, and is nothing else than the Aeat loss of electromag-
netic energy converted to heat energy due to the current (resistance), as
we shall show.

We will now analyze a cylindrical conductor with constant conductivity « . It shall
have the length /, cross section A, and shall carry the current of constant density g.
Then the transformed power in its volume is

2 2
g . &= 2L _p
jVKdr Al = (g4 = IR

= (gA)%l = (gA)(El) = IV (2.163)
because the total current is
I'=g4d,
and the voltage is
V=IE .
Furthermore, we have used
_ LA . (2.164)
K

R is the resistance of the conductor measured in Ohm (£2) (see Section 1.13). Here,
IR = IV is the power transformed into heat due to the current. This confirms our
hypothesis. Ohm’s law is obtained in its usual form

V =RI. (2.165)

This represents the integral form, of what has previously been introduced as Ohm’s
law
g = xE
or
Vv
1

g =xE = =K

1
A
Multiplication by //x gives IR = V.

An important point to highlight is that eqs. (2.155) and (2.156) are much more
general than egs. (2.159) and (2.160), which we obtained using the more restrictive
relations of eq.(2.157). The former also apply to nonlinear media as well as to
moving charges (current densities) of any kind, which are possibly not caused by a
conducting medium.
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2.14.2 Electrostatic Energy

We focus now on electrostatic energy. Its spatial density has been determined in a
rather formal way to be

_cE?2 _DeE
w= == .
2 2
It must be possible to also obtain this expression from purely electrostatic
considerations.

By eq. (2.18), a point charge Q; at location r, is the source of the potential

9,

- 4n80|r— r1|

¢

If we move a second charge O, from infinity to point r, , the thereby stored energy
is

oo 9 90

B 4TE80|I'2—1‘1| B dnegry,

(2.166)

using
Fio = |r2 - r1| )
The potential created by both charges is
0, 0,

¢= 47’[80|l‘—l‘1| Jr47:80|r—r2| '

A third charge moved from infinity to point ry adds to the stored energy

0,0, . 0,0,

Wit W, =
13 23 ’
4Tcaorl3 47’[80}"23

The total energy is now

Q1Q2 n Q1Q3 4 Q2Q3

475807'12 4n80r13 47:;301’23

If we add more charges the relation becomes

00, 00, . 09,

W =
dnggr, 4mnegrys dreyry,
£,0; +o 90,
4n80r23 47’[801"2n .
+ ...
+ Qn—lQn
4'T"-’Sorn -1,n

Using the following abbreviation in eq. (2.166)
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Wi = 004 ; (2.167)
dmeyr;,
the energy can be written as
1
=5 Wi |- (2.168)
ik
The sum extends over all indices i and k, where however, i and k have to be
different. For i = k, the magnitude would be infinite because of r;; = 0.

Basically, every point charge stores an infinite amount of energy in its field
(sometimes called self-energy), which we omit. This merely represents a certain
normalization of the energy. The only contributions we need to consider are those
that stem from interaction of the different point charges. The factor 1/2 is
necessary because of duplicate counting of contributions, as the sum in eq. (2.168)
contains besides W, also W,,, while only one, either W, or W,, may be
counted.
If instead the charge is continuously distributed over the space, the sum turns
into an integral.
"
ZHdQ(F)dQ(V ) (2.169)

4n80|r ’

or with
do(r') = p(r)dt = p(r')dx'dy'dz
do(r") = p(r")dt" = p(r')dx"dy"dz"

W = j | ﬂ—‘)—dr 'dt"|. (2.170)

8TC80|V

The potential accordlng to eq. (2.20) is

n = 1 pr)dr
o(r") 4naOIV|r"—r'I '

This allows to rewrite (2.170):
W= —jp(r") o(F")dr" = %.[(p(r)(V-D)dr . (2171)
Vv
Because of the vector identity

Ve(Dp) = DeVp+ @VeD

the energy can also be expressed as

1 1
= - EID e Vodt + EJ'VO(D(p)d‘c
4 Vv

1 1
= 5}[/EODdr+§§D(pOdA :
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If we now consider the entire space whose surface has moved to infinity where
¢ = 0, then
_ 1

W= EII/E.DdT ) (2.172)

i.e., we obtain just the volume integral over the electrostatic energy density.
Of course, we may add surface charges. Then eq. (2.171) is replaced by

W= %ij(r) ~o(r)dt + %§>A o(r)o(r)dd |. (2.173)

or, if there are only surface charges
1
W = E{DA o(r)o(r)dA .
For a plane capacitor (Fig. 2.64), for instance, the work becomes

1 1
W = EﬁA ¢ 0dA + E{;A ¢,(-0)d4 .

(P —
1_.(&(5 q=97
2 2
Because of O = CV (2.95), one can express the energy that is stored in the field of
the capacitor in several ways.

_lop o lep 2122
w 2QV 2CV 5T (2.174)
On the other hand, the energy is of course

B 2 _s(V)2 1084 1,
Wszrfszdszd72CV.

As necessary, the result is the same.

+o Py

Fig. 2.64
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2.15 Forces in the Electric Field

2.15.1 Force on the Plate of a Capacitor

Consider, a capacitor with the charge O, insulated from its surroundings (for
example, the charge Q remains unchanged). A charge Q within the field E,
experiences the force
F = QE .
Here, E is the field that exists without the charge Q. The electric field inside the
capacitor is
11 110
E=-=-D = - = —=
€ 8|G| €4
It would be wrong to assume that the force that one plate exerts on the other could
be calculated using this field. This field is created by the charges on both plates. We
may conclude from our discussion of Fig. 2.25, that the field of one charged plate
at the location of the other is exactly half that field, namely |c]/2¢ . The magnitude
of the force is therefore

|o] o _ 02
F=l09 =gl - £ 2175
|Q|2s |Q|28A 2eA ( )
This force is attracting since the charges on the two plates have opposite signs.
To solve this problem in a different way is also possible. We take a capacitor
with variable plate distance x. Its energy as a function of x is

w-2 -2
2C  2e4
It requires a force to increase the distance between the plates. i.e., it requires
mechanical energy to increase the plate’s separation. Neglecting friction, this work
must be found again in the electric field energy of the capacitor. For a virtual
displacement dx we obtain with the notation of Fig. 2.65

QZ
—dex =dWw = 28_Adx .

X dx |

< »la—»]
|

L

T

Fig. 2.65
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ie.,

2 aw
%= - (2.176)

Besides the sign, which expresses the direction of the force, this confirms above
expression. Both methods are thus equivalent. The second method is often more
convenient. Written in a slightly different form:

6242 1, o 1

Fo=_ = _146%=_lupE .
x 2ed 27% T2

or per unit area the force is

F 1
X

— = —=-FED |. 2177
y 5 (2.177)

F, =-

2.15.2 Capacitor with two Dielectrics

Consider the capacitor shown in Fig. 2.66, which is filled with two different
dielectrics. The question is whether or not those dielectrics exert some force on
each other. To solve this problem is easy when using the method of virtual
displacement. As before, the charge O shall be kept constant, i.e., the capacitor is
insulated.

Then the energy of the capacitor is

w-2
2C
Using
0 = (g1E)ax + (g,E)a(l—x)
and
V = FEd
yields
c- 0 _ gjax +eya(l—x)
14 d

Fig. 2.66



116  Basics of Electrostatics

and

— 0%d
W 2[gjax + gya(l—x)] '

This results in

d 0%d
F = 7(_VK) = ale, — &
x dx 0= const 2[81ax+82a(l*x)]2 B1722)

Ez[slax +eya(l —-x)]%d

2[e ax + gya(l—x)]?

(31 _82)

E2
= ad;(al -&),

i.e., there is a force in positive x-direction when €, > €, and in negative x-direction

when €, < g, . Per unit area the force is

Fe 2 1 1
X —_— p—

a—c—i = 7(81782) = §E1D17§E2D2 (2.178)

where of course £, = E,.

Both results, (2.177) and (2.178) indicate mechanical stress or pressure in the
form (1/2)ED . Thus we can say, that electric fields cause mechanical stress
(1/2)ED 1in the direction parallel to their field and pressure (1/2)ED
perpendicular to them.




3 Formal Methods of Electrostatics

Having introduced the basic terminology in Chapter 2, we now discuss the formal
methods by which electrostatic problems can be solved. Some problems were
solved already in Chapter 2, but those problems were of such nature that they could
be simplified by invoking symmetry or by plausibility arguments. This does not
always work, and then we have to rely on formal methods having a general
applicability. Even then, numerous problems can not always be solved analytically
and one needs to use numerical methods (see Chapter 8). Here we will restrict
ourselves to analytical methods and focus on the two of the more important ones:
1. the method of separation of variables

2. method of complex analysis for the case of plane fields

We will cover these here first in the context of electrostatics, even though they are
of much more general nature and form the basis for the subsequent parts on current
density fields, magnetostatics, and time dependent problems.

The first step in applying the separation method is to choose a convenient
coordinate system, which allows a simple formulation of the boundary conditions.
This calls for a coordinate transformation. With a few exceptions, we have thus far
only used Cartesian coordinates. Also, the vector operators (grad (V ), div ( Ve ),
curl (V x ), Laplacian (A or V2)) have only been expressed in their Cartesian
coordinates. Therefore, those will be discussed first in the subsequent sections,
before returning to the electrostatic problems.

3.1 Coordinate Transformations

One defines a set of new coordinates based on Cartesian coordinates (x,),z):
up = u(x,y,2)
Uy = uz(x, V,z) (3.1)
uy = uz(x,y,2)

or if we solve for (x,),2):
x = x(uy, uy, u3)
y = yuy, uy, uz) (32)
z = z(uy, Uy, u3)

The equation of a surface is obtained when holding one value fixed, for example
u:
u](xayaz) = C] . (33)

G. Lehner, Electromagnetic Field Theory for Engineers and Physicists,
DOI 10.1007/978-3-540-76306-2_3, © Springer-Verlag Berlin Heidelberg 2010
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Simultaneously fixing a second coordinate, for example, u, defines another
surface. The intersection of both surfaces is defined by simultaneously meeting the
equations

uy(xn2) = ¢
. (3.4)
uy(x,y,2) = ¢y
Here, the only remaining variable is u5 . Its parameterized representation is
x = x(cy, ¢y, U3)
y = y(ey, ¢p,u3) (3.5)

z = z(cl, Cy, u3)
A point is obtained if we also fix u; (153 = c3).
u(x,y,z) = ¢
uz(x,y,z) =c, (3.6)

”3()5,)’7 Z) = C3

One may view this point as the origin of a local, in general non Cartesian
coordinate system (Fig. 3.1). Let us calculate the distance between this point
P(u,, u,, u3) and the point P'(u, +du,, u, + du,, uy + du,). Using Cartesian
coordinates we have

ds? = dx?+dy?+dz? . (3.7)

Where of course

x = x(cy, ¢y 03)

y = y(cla 029 C3)

z = z(cy, €5, €3)

uq
Fig. 3.1



_ Ox ox
dx = —8u1du1 auza’uz
oy oy
=22 du, + 22 du, + =2
dy 8u1du1 Guzduz
oz 0z
= 2= du, + =—du, +
dz 8uldu1 6u2du2

3.1 Coordinate Transformations

Substituting (3.8) into (3.7) and after ordering we obtain

(5 e

SRR
(5 + (&) () e

ds? = [(LX)Z(Q)
Ou, Ou,

L0y Oy

+_6z oz

[Gx Ox
ﬁulauz

8u16u2

Ly Oy

Ou, Ou,
4_82 0z

}lula’u2

+ 2 +[6x Ox
6u16u3

6u18u3

Loy Oy

Ou | Ouy
+782 oz

}a’uldu3

N [6}( Ox
6u26u3

6u26u3

8u26u3

}duzdu3

119

(3.8)

(3.9)

We will not use this rather inconvenient expression in its full generality, but restrict
ourselves to orthogonal coordinate systems. These are characterized by the fact that
the three coordinate lines in Fig. 3.1 are mutually perpendicular at every point. We
define the tangential vectors t,, t,, t;. For instance, the vector tangent to the line
uy, which was given in eq. (3.5) is determined by:

ox O oz
Ouy’ Ouy’ Ousy

ty = |

Similarly for the remaining vectors:

¢ = Ox 0y 0z .
1 8141 8141 Ou,
¢, = (O D 0z
2 Ouy Ou, Ou,

Fig. 3.2 shows the coordinate system of Fig. 3.1 with its tangent vectors.

(3.10)

(3.11)
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t3 A
us

)

t, \

up
uq
Fig. 3.2

A coordinate system is orthogonal if the following holds for every point:

tiet, = 0
tyot; =00 (3.12)
tyeot; = 0

The vector from P to P' is
dr = tidu;+ tydu,+ tydusy . (3.13)
Therefore the distance element (squared) is
ds? = dr e dr
= t%du% + t%du% + t%du%
+2t,0t,dudu, ) (3.14)

+2¢t e 13 duldu3

+ 21‘20 I duzdu3

This is a much shorter way to write eq. (3.9). For an orthogonal coordinate
system, because of eq. (3.12), the (square of the) distance element simplifies even
more

ds? = fdu} + Bdub+ Bduj . (3.15)

The only difference to the respective expression in Cartesian coordinates is the
occurrence of the scale factors ¢, ,, ¢y which are spatially dependent, i.e., they are
generally different at differing positions in space. The volume element in
curvilinear coordinates is characterized by du,, du,, du,. Its edges are
tdu,, tydu,, tydu,, and thus has the volume element

dtv = ttytzdu duydusy | (3.16)
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The infinitesimal line element or displacement ds has the components

and an infinitesimal area element dA has the components
‘ dA4; = 1, du, dul‘ (i, k 1 all different) (3.18)

The factors # are the diagonal elements of the so-called metric tensor, which has
off diagonal elements if the coordinate systems are not orthogonal.

3.2 Vector Analysis for Curvilinear, Orthogonal Coordinate
Systems

3.2.1 Gradient

Starting form the definition
U, AU, Uy u)—O(uy, Uy, u
(Vg), = lim @ (uy 1> Uy U3) = @uy, Uy, u3)
L Auy—0 Asy

and because of
As; = t;Au,

one obtains

u, FAu, Uy ur)—o(uy, Uy, u
(V(P)u:llim(p(l 1» Uy U3) = @(uy, Uy, U3)
L LA >0 Au,
_ 109
t,0u,

Similarly, for the other components

_ (1o 10¢ 109
¢ t,0uy’ t,0uy t;0u,

(3.19)

3.2.2 Divergence

The starting point for the definition of the divergence is the limit of a surface
integral of the type given by eq. (1.22). Using nomenclature established in Fig. 3.3,
one finds the vector a with its components a;, a,, a3

. 1
Vea = lim — ¢ adA
V—0 V§
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us

az(uztduy)

Fig. 3.3

Vea = lim _
duyduydus >0 1ylytyduyduyduy

roay(uy +duy) ty(uy +duy)ty(uy + duy)du,dus 7
—ay(uy) ty(uy) t3(u)du,duy
+ ay(uy +duy) ty(uy + duy) ty(uy + duy)du duy
—ay(uy) ty(uy) t3(uy)du duy
+ aj(usy +dug) ty(uy + dus) ty(usy + duy)du du,

—ay(usy) t(uz) ty(us)du du,

0 0 0
O (aytyty) + Dyt ) + _(a3t1t2)}duldu2du3
_ lim [6u1 Ou, Ousy

>

du,duyduy; — 0 t1t2t3duldu2du3
ie.,
1 0 0 0
Vea = —— |~ _(a,t,t,) +—(a,t,t,) + —(a,tt . 3.20
*a t1t2t3[au1(al 213) 8u2(a2 113) au3("3 1 2)} (3.20)

3.2.3 Laplace Operator

Since
Ap = VeV = V2¢p
one may derive the Laplacian from both, eq. (3.19) and (3.20). One obtains
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24 l‘ t tt
vip = ——| 9 (2 36(") d ( 36(P) 0 (1—2‘9&) . @2
tityty| Ou N ou, Ouy™ 1y Oou Ous 1y Ous

3.2.4 Circulation

To calculate the curl, we start from eq. (1.34) and use the right hand rule to
establish the relation between the direction of the circulation (also called the
rotation) and the direction of the line integral of Section 1.7. Using the notation
from Fig. 3.4, one finds:

1
Vxa lim —_—
Vo, Cdinduy 0 Glydiydu

ay(u3) - ty(uy)duy, + az(uy +duy) - ty(uy +duy)dusg
—ay(usy +dug) - ty(usy +duy)du,
—az(uy) - t3(uy)dus,

0 0
[a—uz(%%) 76_%(512%)}114241”3

= lim
du,duy — 0 t213du2du3

The other two components of Vxa are derived in the same way. The end result is

direction of
path

Fig. 3.4
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1r 0 ]
oo, 3 " gt
170
t31;Louy
170 0 ]
foLau, 22 gt

5 _
Vxa = (a1f1)*a—u1(a3f3)_ . (3.22)

Using the unit vectors e, , e, , e, of a coordinate system,

t
e, = —,
l.ll tl
t,
euz = [— .
2
t
e, = =,
3 t3
we may also write curl a in its determinant form
e“l e“z e“3
Ly 131y 111
Vxa = P P P (3.23)
Ouy Ou, Ouy
ajty ayty asly

or
tl t2 t3
Vxa= ——| 9 9 9| (3.24)
t1tyt3| Ouy Ou, Ouy

apty ayty asty

3.3 Some Important Coordinate Systems

Of the many interesting coordinate systems, this book will only employ three:
Cartesian, cylindrical, and spherical coordinates. We will summarize the results of
our previous discussion for these coordinate systems.



3.3 Some Important Coordinate Systems 125

3.3.1 Cartesian Coordinates

For Cartesian coordinates, the scale factors are, of course, ¢, = t, = #; = 1 and
from eq. (3.19) through eq. (3.24), we obtain the familiar expressions

op 0¢ 09
Vo = (£, 25, 25 .
o} <ax’ay’az>
Voa*_x+%y+%z

x Oy Oz

o, _aa,
e e, e oy Oz
Vxa=|0 0 0| | 0a, Oa
Ox Oy Oz 9z ox

a, a, a, @y a_ax

| Ox Oy |

3.3.2 Cylindrical Coordinates

The case of cylindrical coordinates is illustrated in Fig. 3.5. The coordinates are

u =r
Uy = ¢, (3.25)
Uy =z

Fig. 3.5
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or expressed in Cartesian coordinates

X = rcose
y = rsin@
z =z

(3.26)

With this, eq. (3.10), and (3.11) it follows for the tangent vectors in Cartesian

coordinates:
t, = (coso, sing, 0)
t, = (-rsing, rcosg, 0) | ,
ty; = (0,0, 1)
ie.,
2 =1
ty = r2 R
3 =1

and consequently for the volume element and the (squared) distance element
dt = rdrdedz

ds? = dr?+r2de?+dz? ,

and furthermore

_0 10 2
V(I) - <E’ra([)’az>¢ .
0

10 1 0
=" yq +-—"q +-—
Vea rarmr ragoa“’ aZaz .
10 0 10% 82
2 = [==Z _+——+—Z) )
v = (15rs EEYCAPIL
1o, 0, |
(Vxa), roQ ¢ 0z ©@
Vxa = | (Vxa) | = Q ,g
? oz art
(an)z lira )_lia
| ror 9 roe " |

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Be careful not to confuse the angle ¢ with the potential ¢ , which was up to now
also labeled with ¢ . We will identify the potential with some other symbol

wherever confusion with the angle is anticipated.
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3.3.3 Spherical Coordinates

Fig. 3.6 illustrates the spherical coordinate system.
The spherical coordinates are,

u =r
u, = 0%,
Uy = @

or expressed in terms of the Cartesian coordinates

x = rsinBcos@
y = rsin@sin@

z = rcos0

For the tangent vectors

-
<
|

= (sinBcos@, sinOsine, cos0)

(rcosBcoso, rcosOsing, —rsin0)

t; = (~rsinOsing, —rsinOcos¢, 0)

and
t21 = 1
3 =r? ,

t% = r2sin%0
and consequently for the volume element and (squared) distance element
dt = r2sin0drdodo ,

ds? = dr?+r2d0% + r?sin20d¢? ,

Fig. 3.6
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(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



128 Formal Methods of Electrostatics

and
_ 0 10 1 0
V(I) - <E’ r%arsine%>¢ s (341)
_ 10, 9 1 0
Veas Sar o rsineae "% " sin6ag e - (3:42)
10 ,0 1 o0 . ,0 1 02
2p = | ==r2—+——_sinf—+ —) ,
vee (rzai’r or rzsinﬁaesmeae r2sin?0 0?2 ¢ (©43)
_ ——sinBa —Lia |
(Vxa), rsin®0o0 ¢ rsin@ogp ©
Vxa = |(Vxa)y| = 1 0, 10 (3.44)
o 0 rsinog " ror Ve
(Vxa)g 12,0y 12,
rore 9 ro0 " |

3.4 Some Properties of Poisson’s and Laplace’s Equations
(Potential Theory)

Poisson’s and Laplace’s equation (2.11) and (2.12), respectively are the basis for
the formal treatment of electrostatics.

3.4.1 Problem Description

A large class of electrostatic problems are described in the following way:
Consider an arbitrarily shaped region, with an arbitrary distribution of volume
charges p(r) inside. Given is the potential ¢ on its boundary or the perpendicular
component of the electric field on the boundary, i.e., (Vo), = 0¢/0n. This
represents Neumann s boundary value problem when 0@/ 0n is prescribed. On the
other hand, when ¢ is prescribed, it is called Dirichlet’s boundary value problem.
Of course, it is possible to prescribe ¢ on part of the boundary and 0@/ 0n on the
other part, in which case one is dealing with a mixed boundary value problem.

The region in question may be bounded by any number of arbitrarily shaped
surface areas.

One can uniquely solve these kind of boundary value problems using the
methods of potential theory . Its proof involves Green’s integral theorems.

3.4.2 Green’s Theorems

The starting point is Gauss’ integral theorem
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IVVoa dt = ﬁAaOdA .

Define a vector a as
a=yVo,
where y and ¢ are arbitrary scalar functions. When substituting, one obtains

JVeudt = [Vo(yV)ds = [ [y(VeV)+(Vy)+ (V§)lde
= §A\|/V¢0dA

This is Green's first identity. It is permissible to exchange y and ¢, as they
are arbitrary anyway. This gives

JVe@Vy)dr = [ [0(VsVy) + (V) s (Vy)]lds

= §JA OV e dA

(3.45)

(3.46)

Now we use:

Ve(Vd) = V2 and Ve(Vy) = V2y,
as well as

VyedA = Vyendd = (Vy),dA

oy

= —1dA
on ’

and similarly

o9
= —tdA .
VoedA and

Using these relations and subtracting (3.46) from (3.45) yields Green's second
identity, also known as Green s theorem.

| wv24-ov2yyde = H(w2l— 42V as (247

On the other hand, if we let § = v in one of the two equations (3.46) or (3.45),
then we obtain one of Green’s integral theorems:

V20 + (Voydr = §(022)aa . 2.48)

If the functions ¢ and y depend on two variables only, then (3.47) and (3.48)
reduce even more:

J (V20— 0v2w)ad = §(vS2- 42" as

and

jA(¢V2¢+(v¢)2)dA = §(¢%)ds )
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For the one dimensional case this gives
x2 " " U ' x2
[ ("= dwdr = [wd' =o',
1
and
x2 " U U X
[ (00" +¢D)dx = [69'], -
1
These are simple integrations by parts. Green’s integral theorems are thus simply
generalizations of integrations by parts to two or three dimensions, respectively.
3.4.3 Proof of Uniqueness

Suppose (for our Neumann, Dirichlet, or mixed problem) there are two solutions
¢, and @, . This means that

2
V(Pl_ip_(r_)a
€0
2
V(pzsz
€0

and the boundary conditions shall also be satisfied.
We define a new function as the difference

(I’ = 01—y
then
V2o = V29, -V, = 0,
which means that it has to satisfy Laplace’s equation. Furthermore, the potential
along the boundary is
¢ =0
or
o~
e 0
or — in case of mixed problems — one of the equations along part of the boundary

and the other equation along the remainder of the boundary. We apply Green’s
theorem in its form (3.48) to ¢ and obtain

jV(vé)Zdr - 0.

Since (V(IJ)2 is always positive, this can only be true if the integrand is identically
Zero

or
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(E) = const .

The case of a Dirichlet, or even the mixed boundary value problem requires
that @ = 0 everywhere. For Neumann’s problem, ¢ is determined, except for a
physically insignificant constant.

The problem may also be posed in a different way. Given is the charge of a
conductor in an electric field. Then

%_ _p-o
on "og,

(The negative sign in E, = —c/¢, is due to the fact that the normal component
points outwardly, relative to the region that contains the field, which means it
points into the conductor). Therefore

0 = [odd = gy a(pdA

Thus, it is not 0¢/dn that is prescribed along the boundary but the integral
I (O0¢/dn)dA . Furthermore, ¢ is constant on the surface, although its value is yet
unknown. If we now have two solutions ¢, and ¢,, then, as before, Laplace’s
equation applies to both, and to their difference. Integrating both solutions over the
boundary gives

0-c¢ ja_(pld j_ dA .
0)on
Therefore
~ ~ a ~
Vo)idt = [ 0ZLodA
JV( ©)*dr JA‘Pan")

APy~ ) APy~ )
= [(0) = 0))—2—=dA = (¢, ~9,)] —=—dA

= (‘P] (Pz)(Q OQ)

as before. Again we find
Vo =0

and

¢ = const .

These uniqueness proofs have a common theme, and are formally based on eq.
(3.48), which concludes that if the boundary conditions require VZ2¢ = 0 on the
surface, together with ¢ = 0, that then ¢ has to vanish everywhere. There is a
plausible way to understand this. One can prove that in an area where V2¢p = 0,
¢ may neither have a maximum nor a minimum. If there were a maximum (or a
minimum) of ¢ at any point inside the region, then in a neighborhood of this point,
all lines of V¢ had to point towards (or away from) it. Any surface in the vicinity
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of the maximum (or minimum) would be penetrated by a non-vanishing electrical
flux. This is only possible if there are volume charges present, which would require
V2@ # 0. Therefore, the assumption of a maximum or minimum inside of this area
would lead to a contradiction. Then, if ¢ = 0 on the boundary, it can not be larger
inside, but it can also not be smaller than zero inside and consequently ¢ = 0
everywhere in the region. In other words: If in a region V2@ = 0, then the
function @ may have its maximum or minimum values only on the boundary of that
region. Uniqueness of the solution of Dirichlet’s boundary value problem is an
immediate consequence of this statement.

3.4.4 Models

The equation V2@ = 0 has a frequent occurrence in physical science and it
describes a vast number of problems. This enables one to frequently map physical
problems onto a corresponding electrostatic problem. For example, the two-
dimensional Laplace’s equation

2

2
(A
ox%  0y?
also describes the displacement of a membrane suspended on a frame which is

considered to be small. The boundary (frame) defines ¢ and inside V2¢p = 0.
Such a membrane can be considered a model for electrostatic problems.

3.4.5 Dirac’s Delta Function (5-Function)

The & -function is particularly useful in the following, which is why we will
introduce it here. It shall be noted that our exposition here does not substitute a
rigorous mathematical introduction.

A rough, illustrative way to describe the character of the J -function is to note
that it vanishes everywhere except for one particular point of its argument (namely
0), where it takes an infinite value, exactly such that its integral equals 1.

0 &
S(x—x) = { or e (3.49)
e}

for x =X

+o0
j O(x—x")dx =1 (3.50)

The & -function is not a function in the usual sense. It belongs to a more general
category of functions, which sometimes are called improper functions, generalized
functions, or distributions. Another possibility is to imagine the J -function as the
limit of a series of functions. It can be constructed in various ways, for example,
1. The limit of a series of rectangular functions as illustrated in Fig. 3.7.
Thus
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gp(x) = 2h
0 else
and

3(x—x") = lim g,(x)
h— o
The limit of a series of Gaussian functions as illustrated in Fig. 3.8. Now

) = == exp 2]

aNT a

where
+o00
waa(x)dx =1

and
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S(x—x) = lim f (x).
a—0

The 6 -function is an idealization and useful mathematical tool. Nature does
not have & -functions. It helps provide use with a formal analogue to the point
charge, which is also an idealization. A point charge may formally be described by
a charge density p, which vanishes everywhere but at one particular location,
where it becomes infinitely large. We will generalize the one-dimensional
d -function for this purpose.
|8(r—r') = 8(x—x)3(y—1)8(z - 2] (3.51)
This allows to describe a point charge Q at the location r’ by
p(r) = 03(r—r') .

Integrating over the entire space gives
J'p(r)dr = J'QS(x —x")d(y—y")d(z—z")dxdydz
Vv

= Q_[ES(x—x')dx.[S(y—y')dy.[S(z—z')dz
=0-1-1-1=0,

as we had expected.
An important property of the 6 -function that follows from above discussion
is:

J A3 —x)dx = fix) 652

Thus, the & -function has the defining property of filtering a particular value from a
smooth function when integrated.
One may write as well

[ 80—y = [ A3 -

+00
= f(x’)J;OO S(x—x")dx = f(x')- 1.
Similarly for a function f(r), defined in the entire space

J f(r)d(r—r)dx = f(r') , (3.53)
entire
space

which results from multiple applications of (3.52).

The & -function is symmetric

O(x—x") = d(—[x—x']) = d(x'—x) , (3.54)
It is possible to differentiate it as well as integrate it. Its indefinite integral is
Heaviside's step function.

H( y 0 for x<x (3.55)
x—x') = )
1 for x>x

Indeed,
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0 fi !

J.x S 3" = { or x <x ’

—o0 1 for x>x'
or

fx O(x"—x")dx" = H(x—x") .

—00
conversely

dH(X*x') _ S(X*x')

dx ’

i.e., differentiating the step function (which is not possible with ordinary functions)
results in the J -function.

To avoid confusion about the dimensions, we note that by eq. (3.50), the
& -function carries a dimension, namely the inverse of its argument, i.e., x~! . When
the argument of the 8-function is a vector, then based on the definition of (3.51) its
dimensions are for example, x3 for the three-dimensional case.

3.4.6 Point Charge and 6-Function

Poisson’s equation applies to the case of a point charge.

vip = - £,
€o
where
p(r) = Q8(r—r'),
ie.,
V2p - Q=)
€9
We know its solution already
1
¢ = 74—75%(—)' m )

i.e., we may now write for all locations, including the location of the point charge,
(which was previously impossible)

20 Q1 Qs
v 4ngy [r—r € d(r—r),
or
1
2 - _ !
\% v 4nd(r—r')|. (3.56)

In Section 2.3, we had to exclude the locations of the point charges, because we
were unable to differentiate there. With the use of the & -function, those difficulties
or restrictions are now removed.
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The potential for an arbitrary charge distribution p(r) we previously found
by superposition to be
o(r) = 41‘(8 j r—r |
It is worthwhile to also formally prove this result. Applying the Laplace operator to
this equation gives

V2(r) = —— [v22I) 4o

47:8 ’|r |

:480Ip() |T

Fso' [p(r)(—4m)8(r - r')dv'

(r)

€9

b

this shows that the expression for ¢ fulfills Poisson’s equation, proving its validity.
For completeness, we note that there exists a more general (nevertheless, not
the most general) solution for

Vig = Q3(r=r)
€0
which is given by
_ 0 .
= = t.
¢ 4ne, r—r| cons

Only the boundary condition ¢ = 0 at infinity makes the solution unique and
forces the constant to vanish.

3.4.7 Potential in a Bounded Region

When considering the entire space with all its charges, then ¢ is given by the usual
integral

In contrast, if we just consider a finite space and only those charges inside this
region, then Green’s theorem (3.47) allows certain statements about this situation.
For this purpose we use (3.47) and substitute
& = ¢ where VZ2¢p = — p(r)
€
0

and
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_ 1
\V - !
r—r|
This gives
; 2~ 2 1 _ B(r)
IV(|l‘—l"|V ooV |r—r‘|)a,T j[80|r r|+q)(r)4”5(l‘ Y)J
= JVE—OTI.(L)dT+4n(p(r')

1 O o 1 )
= — — = dA
§(|r7r’|6n (Panlr—r‘l
This result assumes that the point r’ is inside the respective volume. If that point is
at its surface, then the factor 4n needs to be replaced (in case of a “smooth

surface” as in Section 8.2.1) by the factor 27, and if that point is outside the
volume, then the factor becomes 0. Exchanging r and r’ gives

0 (o
—OQ7r

B(r

47:8 r| 475

o(r) =

§> (') dA'|  (3.57)

on'lr —r| r|

This result is peculiar and is sometimes called Kirchhoff theorem or Green’s
formula. It states that ¢, besides its usual term

Ljp(r')df'
dng ” [r —r'|

>

whi