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The Author’s Preface

This book deals with the fundamental principles of electrodynamics, i .e. the theory
of electromagnetic fields as given by Maxwell's equations. It is an outgrowth from
the lectures, which the author has been giving to the students of electrical
engineering at the University of Stuttgart, Germany, for approximately a quarter of
a century. For the textbook, the contents of the lectures have been supplemented by
a chapter on numerical methods for the solution of boundary and initial value
problems, which provides a rough first survey over the methods available only,
without going into details. Furthermore, there are several appendices devoted to
some more special topics, as among others to the problem of the possibility of an
extremely small but nonzero restmass of the photon, which would lead to Proca’s
equations, a modified version of Maxwell’s equations; to the important question of
eventually existing magnetic monopoles; to the deeper meaning of the
electromagnetic potentials in view of quantum mechanics and the Bohm-
Aharonov-effects. The last appendix covers a brief survey of special relativity,
because this, in principle, is an essential part of electrodynamics, which is
inevitably needed for its real understanding. 

The treatment is based on Maxwell’s equations from the beginning. They are
described and explained in Chapter 1. The following chapters are devoted to
electrostatics; to the important mathematical tools of electromagnetic field theory
(method of separation of variables using cartesian coordinates, cylindrical
coordinates, and spherical coordinates; conformal mapping for plane problems); to
stationary current density fields; to magnetostatics; to quasi stationary time
dependent problems as field-diffusion, skin effect etc.; and finally electromagnetic
waves and dipole radiation. Everything in these chapters is derived from Maxwell's
equations, except the additionally necessary assumptions characterizing various
media, their conductivity, polarizability, and magnetizability. 

The basic concepts of vector analysis are also developed from the beginning
together with Maxwell’s equations. The divergence (div) is defined as the small
volume limit of the surface integral (flux) of a vector field and the rotation (curl) as
small surface limits of three line integrals (circulations) of a vector field. These
definitions immediately clarify the plausible meaning of both of these operators of
vector analysis. The divergence being the volume density of sources or sinks, the
rotation being the three dimensional surface density of circulation. The integral
theorems of Gauss and Stokes are immediately plausible consequences of these
definitions also. This procedure provides an easy and well comprehensible access
to the realm of vector analysis. It also very clearly demonstrates the physical
meaning of Maxwell’s equations. Helmholtz’s theorem (presented in one of the
appendices) teaches us that each vector field is completely defined by its
divergence and its rotation. So it is obvious that we need four equations to describe
electric and magnetic fields, two for their sources and sinks and two for their
circulations. Thus, Maxwell’s equations, often considered to be almost
incomprehensible, are hoped to become really plausible. 



vi    The Author’s Preface

The different chapters contain a variety of analytical solutions of boundary
and initial value problems. It is quite often claimed that this is no longer of interest
and that such problems nowadays are usually treated numerically by computers.
The author cannot share this opinion. People trying to solve electrodynamical
boundary and initial value problems numerically, without having studied and
understood the theoretical background and not having seen examples of a variety
of fields, often if not mostly obtain faulty results. Having little or no feeling for the
matter, they may believe in the correctness of their results. It is not at all easy to test
if the solutions are really correct. The availability of many analytical solutions is a
very valuable and even indispensable tool for testing numerical programs. It is
always advisable to solve similar problems analytically when doing numerical
work and to test the numerical methods by comparing the results.

Initially conceived for students of engineering and physics, the textbook
turned out to be useful for professionally working engineers and physicists also.
That is why six editions of the original German version of the book have appeared
already. The author together with the translator hopes that the present English
translation will be as useful for its readers.

Stuttgart, 2009 Günther Lehner
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List of Symbols

General Symbols

~ (For example ) refers to a function f which is derived via an 
integral transform (Fourier, Hankel, Laplace transform)

~ Proportionality sign (for example F ~ m)

* (For example z*, w*) refers to the complex conjugate of a 
quantity (e.g. for z, w), or to a dual quantity (e.g. A* to A, ϕ* to 
ϕ)

n, A perpendicular component if used as an index

t, || A tangential component if used as an index

The circle indicates that the integral is to be taken over a closed 
contour (line integral) or over a closed surface (surface integral).

 , Nabla symbol “del” and “del dot” operator 

(del in Cartesian coordinates: )

Divergence of the vector a

Circulation of the vector a (curl)

Laplace operator

^ Quantum mechanical operators, e.g. .

Used to indicate multiplication of scalar quantities

Scalar multiplication of vectors, scalar product, dot product

Vector product of two vector quantities

Dyadic product. It is an operator whose result is a tensor matrix 
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Latin Letters

A vector and its cartesian components 

a, a (Surface) area, magnitude and vector (where the are caould be 
confused with the vector potential)

A, A (Surface) area magnitude and vector

Magnetic vector potential

Electric vector potential (in analogy to the magnetic vector 
potential).

arg(z) Argument of a complex number (phase angle)

ber(), bei() Kelvin’s function

Magnetic flux density, magnetic induction, B-field

Amplitude of the magnetic field of an electromagnetic wave

Normal component of 

Tangential component of 

c Speed of light in vacuum

cG Group velocity of light

cPh Phase velocity of light
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Displacement field (electric)
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Tangential component of 

Differential of a surface element (vector quantity)
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1 Maxwell’s Equations

1.1 Introduction

In this book, we describe the principles which govern electric and magnetic or
electromagnetic fields and waves. This area of knowledge, frequently referred to as
Electromagnetism, has a long history and is associated with many famous names
among which Maxwell has a prominent place. Maxwell was the one who, in the
nineteenth century, gave electromagnetism its final form, by fixing an
inconsistency and summarizing the then voluminous material into few equations,
through which everything else can be derived. These equations are called
Maxwell’s equations. They form the foundation of the so-called Classical
Electromagnetism. The first chapter of this book shall serve to introduce these
equations.

We have to emphasize, however, that Classical Electromagnetism, which is
mostly expressed through Maxwell’s equations is not really complete. The 20th
century brought insights that have caused extensions in two different directions.
The first is related to Albert Einstein and leads to the Theory of Relativity.
Application of this fundamental idea is intimately related, but not limited to
electromagnetism. One could even go as far as stating that Classical
Electromagnetism can only be understood, and its full importance recognized,
through the perspective of the Theory of Relativity. Later we will discuss, that
electromagnetic fields propagate in the form of waves. The thereby created
electromagnetic waves manifest themselves in manifold ways: as radio waves, heat
radiation, visible light, x-rays, gamma rays, etc. In vacuum the velocity of this
propagation is the speed of light in vacuum ( ). The Theory of
Relativity elevates the speed of light to a quantity that is fundamental for the
structure of space and time and thus making it a fundamental constant of nature.
Besides this, electromagnetic waves have also brought another important
knowledge. Light consists, as we have known since Planck, of individual particles
called photons. Together with other fundamental discoveries, which we do not
want to discuss here, this has lead to Quantum Electrodynamics. This theory treats
electromagnetic fields as what they, according to the current state of knowledge,
really are: namely waves and particles simultaneously. That is to say, it describes
how they are created, destroyed, how they interact with other matter, etc.

Of these three closely related theories – Classical Electromagnetism, Special
Relativity, and quantum-electrodynamics – we will only deal with classical
electrodynamics. Nevertheless, occasionally it will be necessary to mention facts
that go beyond it, and to clarify a situation may require use of elements from other
theories, for example the Theory of Relativity. This restriction is purely of
didactical nature and certainly not based on the idea that only classical
electrodynamics is of practical value. The opposite would be true. To mention just
a few examples: the characteristics and behavior of electrons in metals (band

c 3 108m s⁄⋅≈
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2 Maxwell’s Equations

model), behavior of semiconductors and consequently that of transistors, the
processes in photoelectric cells, the achievements of laser technology, effects –
equally as strange as important – such as superconductivity, etc., can only be
discussed and understood by means of quantum theory.

1.2 Charge and Coulomb’s Law

In the following section we will derive Maxwell’s equations. We will do this in an
abbreviated form, but roughly following the historical derivation. We will begin by
considering an historically old experience, which most of us have experienced
many times. If certain objects are rubbed and then separated, they exert a force on
each other. Rubbing changes these objects. They are transformed into a state which
we will call electric or electrically charged – whatever that may mean. To learn
about those forces, we conduct the following thought experiment.

We start by choosing three different objects (A, B, C), which were electrically
charged by rubbing them. There are now the following possibilities:

1. A and B attract each other
2. A and C attract each other

What would be the force between B and C? Is the answer to this question trivial?
Can we make a prediction? In any case, the experiment provides us with the
answer:

3. B and C repel each other
Is this surprising? Is it by chance? No, it is not chance, but a law of nature. We can
repeat this experiment infinitely often and always get the same result: If A attracts
both B and C, then B and C repel each other. There are other possibilities:

1. A and B repel each other
2. A and C repel each other
3. B and C repel each other

also:
1. A and B attract each other
2. A and C repel each other
3. B and C attract each other

This result may be so familiar to us that we take it for granted and it may appear
trivial, but this is not so. Were we to instead deal with gravitational forces or
nuclear forces, our experiment would exhibit different results. Strictly speaking,
our result is correct only under the implicit assumption that the electric force is
greater than any other kind of potentially superimposed force, like gravitational or
nuclear forces. This restriction is very important in natural behavior. The nucleus
of an atom consists partly of particles that repel each other. The nucleus would
burst apart if there were not attracting forces that more than compensate the
repelling electric force. Gravitation, while an attracting force, is too weak to
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prevent destruction of the nucleus. One needs to remain conscious of this fact
when, in the following, we make statements about electric forces.
We can summarize the experience with electrically charged objects in the
following way:

1. There are two sorts of electrical charge, which we term positive and 
negative charges.

2. Like charges repel, while opposite charges attract each other
These qualitative statements are, however, insufficient. At the end of the day, we
want to formulate physical laws quantitatively. We will utilize the following
experimental result: To begin, one can measure the force between charged objects,
for example, by utilizing springs. We measure the force of A on B, and A on C.
Next, we combine B and C, and then measure the force that A exerts on the
combined object B+C. We will find that this force is the sum of the individual
forces of the previous experiment.

This is a principal realization, whose consequence is far reaching. For now,
we simply want to justify the right to expand on our qualitative statements on
charge into a more quantitative one based on the magnitude of charge. We will call
the charge quantity Q. The question of units with which to express Q shall be left
for later. For now, assume we have already defined the unit and found a method to
measure the charge quantity Q in this unit. This allows us to measure charges Q1
and Q2 and so the force between the two charges, which in turn, enables us to
formulate Coulomb’s law:

1. The force between two charges Q1 and Q2 is proportional to both Q1 and 
Q2 and also inversely proportional to the square of the distance  
between them 

(1.1)

2. The axis of the force lies on the direct line between the charges; it is 
repelling for like charges, and attractive for opposite charges.

The fact that F12 being proportional to  is of great significance i.e. it is an
inverse square law.. We will come back to discuss the consequences of this law
later. This property is shared between electric and gravitational forces.

Forces are vector quantities. An arbitrary force  is therefore determined by
three components, for example in a Cartesian coordinate system:

(1.2)

Suppose there is a charge Q1 at point 
, (1.3)

and a charge Q2 at point 
(1.4)

r12
2

F
Q1Q2

r12
2

--------------∼

1 r⁄ 12
2

F

F Fx Fy Fz, ,〈 〉=

r1
r1 x1 y1 z1, ,〈 〉=

r2
r2 x2 y2 z2, ,〈 〉=
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then we can write Coulomb’s law, combining all those statements, in the following
way:

(1.5)

where  is the force that  exerts on . Conversely, the force that  exerts
on  is:

(1.6)

It follows from these relations that 
(1.7)

Here,  is just an arbitrary proportionality constant. It is arbitrary because we
still have to select the units for force, charge, and length. We will later make a
selection, which in turn uniquely defines the physical constant , the so-called
permittivity or dielectric constant in free space. Currently we have created a fairly
simple world, which consists only of charges in an otherwise empty space
(vacuum).

1.3 Electric Field Strength E and Displacement Field D 

A single charge in the otherwise empty space causes that space to change. A
second charge brought into this space experiences a force at every point of that
space. This force is expressed by Coulomb’s law and varies from point to point. At
this stage it will be beneficial to introduce the concept of the electric field. It is the
quintessence of all possible effects by such forces at the different locations of this
space, which become obvious only after we place a charge at a particular point.

The term field, more generally, refers to a quantity of any kind that is a
function of space (and possibly of time). This book will also deal with various
kinds of fields.
The electric field strength is described by a vector quantity represented by the
symbol E. It is defined as the force in the field per unit charge.

(1.8)

This definition makes sense because the force, according to Coulomb’s law, is
proportional to Q and thus E is independent on the (test) charge.

Furthermore, Coulomb’s law states that a charge  at location , at an
arbitrary field point  produces the following electric field:

(1.9)

 F12
Q1Q2
4πε0
-------------

r2 r1–

r2 r1– 3
---------------------    =

F12 Q1 Q2 Q2
Q1

F21
Q1Q2
4πε0
-------------

r1 r2–

r1 r2– 3
----------------------=

F12 F21+ 0=

4πε0

ε0

 E F
Q
---- =

Q1 r1
r

 E r( )
Q1

4πε0
-----------

r r1–

r r1– 3
------------------- =
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For reasons which we will be able to understand only later, we will now define
only for vacuum, the vector quantity of the electric displacement Field  in the
following way:

(1.10)

1.4 Electric Flux

By means of  and Fig. 1.1 we define the electric flux:
(1.11)

 is the component of  that is perpendicular (normal) to the surface element
. The dot indicates a scalar or dot product of two vectors. The vector  is

always perpendicular to the surface element and its magnitude  equals the
value of its surface area. That is:

(1.12)

The term electric flux is based on the analogy to a moving fluid, where the velocity
is:

If the fluid is incompressible, then the amount of fluid that moves through a surface
A per unit of time can be expressed as

This is called flux through the surface. This analogy is frequently used for the
definition of all kinds of fluxes. We now want to ponder about the question, how
much electric flux passes through an arbitrary closed surface if there are charges
somewhere, that is to say, charges can be inside or outside the space enclosed by
our surface.

The answer to this question is rather easy if we limit ourselves to the area of a
sphere (radius r0), with a charge Q1 is at its center. (For a closed surface let  be
always oriented outwardly, see Fig. 1.2.)

D

  D ε0E  =

D

A

dA

D

Fig. 1.1  

  Ω D Ad•
A∫ Dn A  d

A∫= =

Dn D
Ad Ad

Ad

Ad Ad=

v r t,( )

v Ad•
A∫

Ad
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(1.13)

Use was made of the fact that for symmetry reasons . So, in this
case, one finds that the flux is the charge itself. How would this result change if we
changed the spherical surface into an arbitrary one? To formally solve the integral
of the flux (1.11) could become very difficult. A trick, however, allows to reduce
the new problem into the already solved one. We surround the charge
simultaneously by an arbitrarily large surface of a sphere A1, centered at the
location of the charge Q1, and an arbitrary surface A2 (see Fig. 1.3). As a result, for
every small cone we find the following relation:

This is a consequence of: 
 , (1.14)

where dAt is the component of  parallel to  and the fact that although D
decreases with  on one hand, on the other,  dAt, increases with , given that r

dAQ1

Fig. 1.2      

Ω Dn Ad
A∫°

Q1

4πr0
2

------------ Ad
A∫°

Q1

4πr0
2

-----------= = = 4πr0
2 Q1=

Dn D D= =

dA2

A1 (sphere)

A2

Q1

dA1

D1

D2

Fig. 1.3     

D1 A1d• D2 A2d•=
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is the distance from the charge. This means, that independently of the shape of A2,
the same flux passes through it as passes through the surface of the sphere A1.
Let us next study the flux through a closed surface where the charge is outside of it.
The same arguments as before shall serve to analyze the situation in Fig. 1.4, and to
show that the flux through this closed surface will vanish entirely. Every flux
entering the surface will exit it as well. In summary one writes:

(1.15)

What happens if there are multiple charges in our space? We start with the
statement that in order to determine the total force caused by all charges
simultaneously, it is permissible to add the forces exerted by those charges. As
forces are vectors, this addition is a vectorial addition. Addition is also permitted
for the electric field. This only seemingly trivial fact has received its own term:

Superposition principle, which applies to the electric field

We have made use of this principle before, when we introduced charge. We must
emphasize: The superposition principle does not state that it is allowed to add
forces as vectors. This fact is a basic principle of mechanics and is the reason for
the usefulness of vectors altogether. The crucial point is that the force between
charges is independent of the existence of other charges in its vicinity, i.e., is not
changed by those other charges. This, however, is highly nontrivial and perhaps not
even true under all circumstances (it may not apply, for instance, when we deal
with very strong fields).

The superposition principle allows us to write an expression for n charges Qi
at the locations 

 . (1.16)

The flux  through any arbitrary closed surface is thus

dAout

A

Q1

dAin

Din

Dout

Fig. 1.4     
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 
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 
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ri

 E r( ) Ei
i 1=

n
∑

Qi
4πε0
-----------

r ri–
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------------------ 
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finally
 . (1.17)

 equals the sum of all charges inside this closed surface. Instead of point charges,
we are able to study continuously distributed charges in some space. This requires
the definition of the volume charge density . It is defined as the differential
quotient

 , (1.18)

with dQ being the charge contained in the volume element . The total charge in
a volume V is thus

 . (1.19)

This, on the other hand, equals the electric flux that passes through the surface of
this volume, and enables us to write for any volume (see Fig. 1.5) 

 . (1.20)

With this, we found a fundamental relation. It is the integral form of one of the (in
total four) Maxwell’s equations. Before discussing it in more detail, we will need to
introduce several other terms and concepts.

1.5 Divergence of a Vector Field and Gauss’ Integral Theorem

Equation (1.20) is applicable for any volume, in particular for an infinitesimally
small one. This allows one to rewrite 

or

Ω D Ad•∫° Di Ad•∑∫°= = Di Ad•∫°∑ Qi
enclosed

∑= =

 Ω Qi 
enclosed

∑=

Ω

ρ r t,( )

 ρ dQ
dτ
-------

dτ 0→
lim      =

dτ

Q ρdτV∫=

ρ

A

D

V

Fig. 1.5     

 D Ad•A∫° ρdτ V∫=
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(1.21)

This is a very important relation in vector analysis. The divergence  or 
for an arbitrary vector field   is defined as the limit:

. (1.22)

Comparison of (1.21) with (1.22) reveals
 . (1.23)

This is the equivalent of (1.20), the differential form of Maxwell’s equation. We
will verify that it is in fact a differential equation.
The way we derived this equation also illustrates its significance. We use our
previous example of the incompressible fluid where . Therefore, 
can only be non-zero, if fluid flows out of the volume element (source), or flows
into it (sink). To apply this to our field lines E or D, we can say that they can only
originate at locations where electric charges are (Fig. 1.6).

Electric charges are sources or sinks of the electric field

Divergence is a mathematical term suited for this fact and is a measure of the
strength of the source or sink.

At this point one should be alerted to what our conclusions are based on. They
are a consequence of Coulomb’s law, or more precisely of the  dependency in
it. Would this dependency be any different, the relation between D, A, and Q would
not hold:  and . In view of the streaming fluid and the 
dependency, however, we find our results to be rather trivial. A water fountain
idealized as a point source pours water evenly in all directions and produces a
purely radial flux field, with . The flux  which does not
enclose a source has to be zero. On the other hand, we have to note that any, even
the slightest deviation from Coulomb’s law, would be significant and would result

ρ
D Ad•A∫°

V
-----------------------

V 0→
lim=

div a a∇•
a r( )

 a∇•
a Ad•A∫°
V

---------------------
V 0→
lim  =

 D∇• ρ =

v Ad•A∫° v∇•

Fig. 1.6     
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in a quantitatively different electrodynamics. For that reason, it was interesting and
necessary to verify by measurements, whether any deviation could be found. Up to
now, not even the most precise measurements have found any deviation. It cannot
be excluded, however, that such deviations might be found in the future when even
more precise measurements become available. In such a case, this will require that
this theory be modified at least in parts. These are areas of concern, which reach far
into the domain of Quantum Mechanics and Relativity. They are related to the
question whether the rest mass of photons is actually zero or not. Appendix A.1
will deal with this topic in more detail.

The above definition of the divergence leads to a for us very important
theorem. We want to integrate , the divergence of a vector field  over the
volume shown in Fig. 1.7. We use the following fact:

This means to separate the macroscopic volume into many microscopic volume
elements and then calculate the divergence for each such micro element by taking
the limit of V approaching zero. In this case, all the surface integrals inside cancel
because each surface occurs twice, each time with a different sign, as the normal
vector for each of those two surface elements has the opposite direction. What
remains is the surface integral over the outer surface of the macroscopic volume,
i.e.: 

(1.24)

This is Gauss’ Integral Theorem.
This equation formally establishes the relation between (1.20) and (1.23).

Using (1.24) in (1.20) gives:
.

a∇• a

a∇• τd
V∫

a dA•∫°
Vi

------------------
Vi 0→
lim Vi

i
∑=

Fig. 1.7   ill  

  ∇ a• τd
V∫ a dA  •

A∫°=

D dA•
A∫° ρ τd

V∫ ∇ D• τd
V∫= =
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Because this has to be true for an arbitrary volume, the integrands have to be equal
to each other, i.e.

.
This means that (1.23) follows from (1.20). Conversely, from (1.23) follows

and hence (1.20). In conclusion, we realize that Gauss’ integral theorem provides
the rigorous formal proof to our previous plausibility arguments

The definition of the divergence in (1.22) is didactically advantageous, but
impractical for actual computations. Therefore, we will calculate  in the
Cartesian components of :

(1.25)

We write the related surface integral and take the limit of its volume as it goes to
zero (see Fig. 1.8),

∇ D• ρ=

∇ D• τd
V∫ ρ τd

V∫ D dA•
A∫°= =

∇ a•
a

a ax x y z, ,( ) ay x y z, ,( ) az x y z, ,( ), ,〈 〉=

x

y

z

ax(x+dx)ax(x)

(x,y,z)

Fig. 1.8    

∇ a•
a dA•∫°

V
------------------

V 0→
lim=

 =   1
dxdydz
------------------

dx dy dz,, 0→
lim ax x dx+( ) ax x( )–[ ]dydz ay y dy+( ) ay y( )–[ ]dxdz+

 
 




                                                           + az z dz+( ) a– z z( )[ ]dxdy
 
 



ax x( )
x∂

∂axdx ax x( )–+ dydz … … …–+[ ]dxdz …–[ ]dxdy+ +

dxdydz
-------------------------------------------------------------------------------------------------------------------------------------------------------------

dx dy dz,, 0→
lim=
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that is

(1.26)

The divergence is a scalar quantity, formally expressed as the scalar product (dot
product) of the vector operator  (Nabla or “del”), for Cartesian coordinates with
the vector , and using the Cartesian unity vectors  as

 . (1.27)

1.6 Work and the Electric Field

A charge Q within the reach of an electric field experiences the force  and
moves, if not held fixed in place. The field performs work on the charge.
Conversely, to move the charge against the field requires one to do work. 
If we move the charge from the starting point PA along the contour C1 to an
endpoint PE (Fig. 1.9), then the total work we have to do is given by

 . (1.28)

This is because  for the path element  is 
. (1.29)

We could have moved the charge along path C2 with the result:
. (1.30)

x∂
∂axdxdydz

y∂
∂aydxdydz

z∂
∂azdxdydz+ +

dxdydz
--------------------------------------------------------------------------------------------

dx dy dz,, 0→
lim=

x∂
∂ax

y∂
∂ay

z∂
∂az+ +=

 ∇ a•
x∂

∂ax
y∂

∂ay
z∂

∂az + +=

∇
a ex ey ez, ,

∇
x∂

∂
y∂

∂
z∂

∂, ,〈 〉 ex x∂
∂ ey y∂

∂ ez z∂
∂+ += =

QE

Fig. 1.9  

PE

ds

C1

PA

C2

W1 F sd•
C1

∫– Q E sd•
C1

∫–= =

dW sd
dW1 F sd•–=

W2 F sd•
C2

∫– Q E sd•
C2

∫–= =
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Initially, we will only deal with time-independent fields. Suppose the results W1
and W2 would be different. We then could take advantage of this to build a
perpetuum mobile (1st kind). Suppose, for instance, W2 > W1, then it would be
possible to move the charge from PA to PB via path C1 and then back to PA via path
C2. We would need to invest the work W1, but gain work W2 on the way back.
Overall, the work of the closed loop would be . Repeating this process
would manifest itself as a perpetuum mobile. Of course, we have reasons to assume
that this is impossible. The theorem of conservation of energy requires to state that:

. (1.31)

or
 . (1.32)

Consequently, the work over any closed contour is
 . (1.33)

This important relation was derived without using the knowledge about electric
fields we have gained so far. We need to verify that the electric fields, in fact, meet
this requirement. Again, we are currently studying time-independent fields only.
Time dependency will come in later, and we will find that (1.33) is not applicable
in such a case. Nevertheless, if (1.33) applies to a single point charge, it also
applies to an arbitrary distribution of charges at rest. The reason for this is the
superposition principle. It is therefore sufficient to prove (1.33) for a point charge.

Before starting our proof, we will investigate some simple properties of line
integrals over closed curves. Fig. 1.10 shows a closed curve C, which is separated
into two closed curves C1 and C2 by inserting a line. We get:

.

Notice that the two newly added path elements identically cancel. This kind of
subdivision can be repeated by individually subdividing C1 and C2, respectively,
and so on. If we now study the field of a point charge, we can start with any closed
contour. We can reduce the integral  to integrals over the kind shown in
Fig. 1.11. For this case we write :

W2 W1– 0>

W1 W2=

E sd•
C1

∫ E sd•
C2

∫– 0=

 E sd•∫° 0 =

Fig. 1.10     

C

C

C

C
C2

C1

C

C

a sd•
C∫° a sd•C1

∫ a sd•C2
∫+=

E sd•∫°
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.

On the paths (arcs) from P2 to P3 and P4 to P1,  is perpendicular to 

.

On the other two paths from P1 to P2 and P3 to P4, on the other hand,  and  are
parallel and anti-parallel, respectively. This means that

.

This finalizes the proof. Unfortunately the perpetuum mobile is not a feasible
option. Relation (1.33) will prove to be far-reaching. First, we need to introduce
some terms, which will be done in the next section.

1.7 The Rotation of a Vector Field and Stoke’s Integral 
Theorem

Consider an arbitrary vector field . For any closed curve, we can write the line
integral . We may also look at arbitrarily small area elements, and the line
integrals corresponding to their boundary. Reducing the size of the area elements
more and more will make the line integrals smaller and smaller, such that they will
vanish in that limit. However, the ratio of the line integral over its related area
element will converge towards a limit. We define a new vector field which we call
the circulation or curl of  (  or ) as follows:

We choose three perpendicular, but otherwise arbitrary area elements
, which share a common center in space. Together they form a right

handed system. With this we write the limit.

(1.34)

Note that the line integral in the numerator is an infinitesimal loop extending over
the boundary of the area element and the orientation is such that the line integral
forms a right handed system with the vector  (Fig. 1.12). 

Fig. 1.11   
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The limits ri are the components of the vector that represents , the circulation
of the vector field  in the coordinate system defined by the three area elements. If

represents the unit vector perpendicular to the area element , then 

or

It is not trivial that one can regard the components ri as those of a vector. We still
need to prove that those components transform like a vector when transforming the
coordinate system (of course into another orthogonal one). We will not carry out
this proof here, but leave it to Vector Analysis. Using the definition of curl
provides Stoke’s Integral Theorem almost immediately. One looks at an arbitrary
area and calculate the related curl. One separates this area into many arbitrarily
small sub-areas and then apply the definition of curl onto those. The result is a sum
of line integrals where all internal parts cancel, and only one line integral over the
outer boundary remains – as was shown in section 1.6 (using Fig. 1.10)

 . (1.35)

As before, orientation of the surface area and direction of the contour integral have
to form a right handed system. Applying eq. (1.35) to the electric field and using
(1.33) we get

 .

This has to be true for an arbitrary curve or its surface area which it surrounds.
Consequently it must be true that 

 . (1.36)

Conversely, eq. (1.33) follows from (1.35) and (1.36). This is because of 

Fig. 1.12   
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E sd•∫° E∇× Ad•∫ 0= =
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This means that eqs. (1.33) and (1.36) are equivalent. Each follows form the other.

This pair of relations were derived for the electrostatic case, i.e. charges at rest. We
will need to modify one of the relations later, when we study time-dependent
systems. We will then explain why  or its respective integral formulation
can be applied without change, while the other ( ) requires modification.

It turns out that above definition is rather impractical, should one actually try
to calculate the curl of a vector field. Therefore, we will write the curl of a given
field  in its Cartesian components (Fig. 1.13). 
It is sufficient to just calculate the x component and then generalize this result,
which can be done rather easily. Based on definition (1.34) and the additional
constraint that the orientation of the path forms a right-handed system with ,
we write:

It is time to summarize our previous results. We found two important 
integral relations, namely (1.20) and (1.33);

These have two equivalent differential relations, (1.23) and (1.36)

The relation between them is established via the integral theorems 
(1.24) and (1.35)

(Gauss) (Stokes)

D Ad•A∫° ρdτV∫= E sd•∫° 0=

D∇• ρ= E∇× 0=

a∇• τd
V∫ a Ad•

A∫°= a Ad•∇×A∫ a sd•
C∫°=

D∇• ρ=
E∇× 0=

a

x

y

z

〈x,y,z〉

Fig. 1.13     

〈x,y+dy,z〉

〈x,y,z+dz〉

a∇×

a∇×( )x
ay z( )dy az y dy+( )dz ay z dz+( )dy– az y( )dz–+

dydz
-----------------------------------------------------------------------------------------------------------------------

dy dz, 0→
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.

Therefore formally expressed as the vector product of the Nabla operator with the
vector a:

 . (1.37)

Or written in the form of a determinant:

(1.38)

The determinant is the usual form used in Vector Calculus to express the vector
product. The vectors  are the unit vectors in x-, y-, and z-direction,
respectively

(1.39)

It is appropriate to deal with the curl in more detail, but we will abstain from this
here and leave it to Vector Calculus to fill in the intricate details. Nevertheless, it
shall  be noted that the reader should not conclude from the notation

 that  is perpendicular to  or to . In contrast to a real
vector, it is not possible to assign a direction to the del ( ) operator. The vector
resulting from  can point in any direction relative to .  can be
perpendicular to , it can also be parallel to it. The reader should convince himself
of this by studying a few examples.

Because of Gauss’s theorem, for an arbitrary closed surface one has

And because of Stoke’s theorem

   
ay z( )dy az y( )dz

y∂
∂azdydz ay z( )dy

z∂
∂aydydz–– az y( )dz–+ +

dydz
----------------------------------------------------------------------------------------------------------------------------------------------------

dy dz, 0→
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z∂
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x∂
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y∂
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curl a a∇×= curl a ∇ a
∇

a∇× a a∇×
a

a∇×( ) dA•A∫° a∇×( )∇• dτV∫=

a∇×( ) dA•A∫° 0=



18 Maxwell’s Equations

The right side is zero because the line integral that is initially there, decreases and
finally vanishes when transitioning from an open surface to a closed one
(Fig. 1.14). Therefore, for an arbitrary volume 

and because this is true for any volume, the integrand has to vanish
(1.40)

Eq. (1.40) is an important relation. It says that the curl of an arbitrary vector field
has no sources. Proof of this relation can also be shown by directly applying
equations (1.26) and (1.37):

The divergence of a vector field depends rather plausibly on the sources and sinks
of that field. The curl also has a plausible meaning. Let us, for instance, analyze a
rotating rigid body (Fig. 1.15). Its angular velocity is ω. Thus, a point at distance r
from the center axis has the velocity 

.
The angular velocity is oftentimes regarded as a vector whose magnitude is ω and
its direction points along the rotational axis of a right handed system. The curl of 
also has the direction of the axis, thus proportional to ω.

One finds that (see also Fig. 1.16)

Fig. 1.14  
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ds

a∇×( )∇• dτA∫° 0=
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 + +=

                        0=
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 .

that is
(1.41)

In the area of hydrodynamics, flows whose rotation does not vanish are referred to
as eddies. This refers to the circulation or rotation. Generalizing, we call those
fields curl free or irrotational whose circulation vanishes, while those whose
circulation is non-zero are termed rotational. Consequently, for electrostatics, one
has time-independent fields which have sources, but no circulation.

1.8 Potential and Voltage

An electrostatic field may be described by different, but equivalent terms:
• It is irrotational
• The integral  vanishes

• The integral  solely depends on the points PA and PE 

but not on the particular path taken from PA to PE.
This allows to express the field in a unique way by a scalar function, which is
closely related to the previously outlined line integral describing the work. In
section 1.6 we found:

 .

This is true for any path C1 or C2 between the points PA to PE. (see Fig. 1.9).
Therefore, the potential function (or simply potential) can be defined by 

 . (1.42)

The choice of the starting point , for which the potential may assume the value
 is arbitrary. This is rather insignificant as just the potential difference (Voltage)

Fig. 1.16    
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is the important property. Accordingly, the voltage between two points  and
 is given by 

(1.43)

or more compactly

 . (1.44)

V21 is the work which can be gained per unit of charge when it is moved from P2 to
P1. Consequently, the dimension for V21 is given as energy over charge. For two
closely spaced neighboring points, the infinitesimal potential difference is

(1.45)

This is the gradient which, in general, is obtained from a function f in the following
way:

(1.46)

From eq. (1.45) follows
 . (1.47)

The scalar function  describes the field completely because the gradient provides
all the components of the field. The function  is the favored way to describe the
field, as this requires one to deal with a simple function instead of three functions
(one for each coordinate component).

Of course we have also
 . (1.48)

This is true for any function . The fact that the curl of the field vanishes, is the
prerequisite that allows for the definition of a unique potential function. There
exists a vector field for every potential, while the converse does not hold. Namely
there is no unique potential for every vector field (nevertheless, in rotational fields,
it is possible, and is sometimes done, to define not unique potentials). In general, it
is possible to prove the generality of (1.48) by using (1.46) and (1.37). For
instance, the relation for the x component is:
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The potential expresses the ability to do work, work of a particle at a particular
spatial location within the field. Is there a charged particle at point , then the
equation of motion applies

(1.49)

If we multiply this equation with 

we get

or

and

. (1.50)

This is the law on conservation of energy. It states that the sum of the kinetic and
potential energy of a particle is constant. If one lets, for instance, a particle start at
location  with velocity , where the potential is , one finds

or

. (1.51)

Here, V is the voltage through which the particle has “fallen”. This relation
between velocity and potential difference has many applications (for instance X-
rays, electronic optics, etc.)

The locations of a potential field at which  is constant is defined as an
equipotential surface. For a displacement  along such an equipotential surface
one has

. (1.52)

Consequently  is perpendicular to , i.e.  is perpendicular to the equipotential
surface. Equipotential surfaces and field lines are important to illustrate fields
(Fig. 1.17). Oftentimes many field lines are combined to form flux pipes
(Fig. 1.18). There are no sources in the charge-free space.

or
.
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If one applies this onto a piece of the flux pipe, one obtains:
.

For the outer surface (skin) the relation is
.

One finds thus
.

This means for an infinitesimally small cross-section, if the surface elements are
perpendicular to the fields, that:

.

or

.

If the field components depend on the location

then the equations for the field lines can be obtained from the differential equations

 .

1.9 The Electric Current and Ampere’s Law

The discovery of electric forces between electrically charged bodies has led to the
previously discussed electrostatic concepts. Besides those, another type of force
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has been known for a long time, the so-called magnetic force, whose close
relationship to the electric forces is a rather late discovery.

The earth, for instance, is surrounded or penetrated by a strange field, which
expresses itself by exerting forces on specific materials. This field or those forces,
respectively, have peculiar characteristics. For instance, they exhibit a force on a
magnetic needle by trying to align it into a specific direction, while they exert no or
only a minor net force on the needle as a whole. The primary effect is a torque and
to a lesser degree net forces, which may even vanish entirely.

Historically, these phenomena were explained in terms of “magnetic
charges”, which were thought to be located in the magnetic poles of a magnet. This
linguistic use is more confusing than helpful, and we will not introduce these
concepts here in this way. Magnetic forces are – as much as we know today – of a
different kind, as electrostatic ones which we have dealt with so far. We will refrain
from using this only seemingly apparent analogy that suggests magnetic fields as
the result of magnetic charges. Based on our current knowledge, there are no
magnetic charges. The cause of magnetic fields is rather an electric current, i.e.
moving electric charges. By experiment, one finds that a current carrying wire in
the vicinity of a magnetic needle exhibits a magnetic field that influences the
needle. Before we study this in more detail, we have to define the electric current
and electric current density. Observe an infinitesimal area element  that is
perpendicular to the flow of the charge and through which in the time interval 
flows the charge . Then the vector of the current density is defined as 

(1.53)

The flux of  through a surface A is the electric current I.

(1.54)

This means that I is the total charge that flows through the surface per unit of time.
There are materials, within which charges can move freely, the so-called

conductors. This is in distinction to insulators, where this is not possible under
normal conditions (or only to a very limited extend). Thus, a current may flow in a
conductor. It is then surrounded by a magnetic field. The simplest case is for a
straight and infinitely long wire. In this case, one finds that the force on a needle of
a compass is inversely proportional to its distance to the wire (that is, with
increasing distance it decreases by 1/r) and that the magnetic needle orients itself in
a tangential way along concentric circles that surround the wire (Fig. 1.19).

To describe this situation one introduces the so-called magnetic field intensity H.
The accompanying field surrounds the infinitely long, straight wire in the shape of
closed loops. We will calculate the integral  for any such closed loop. First
one determines the case when the loop does not enclose the wire, i.e. the current I.
As we found already before, it is possible to reduce those integrals to ones of the
form as shown in Fig. 1.20.
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In this case one has

where

because of , and

 

because of

and

.

C is a constant, which we will leave undetermined for now. The conclusion is that
for a path that does not enclose any current one has:

.
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Next we study a path C that encloses the wire. If we add a circle that also encloses
the wire, which we connect to the given path, in the way specified by Fig. 1.21,
then we obtain an overall path that does not include the wire and consequently the
integral  vanishes. Because of the fact that the two integrals over the link
between the circle and the initial path identically cancel, one finds that the overall
path including the original path C and the line integral over the circle, which is
oriented in the negative sense (clockwise), also vanish.

.

or

.

All such line integrals give or result in the same, non-zero value. Furthermore, one
can experimentally confirm that all forces, and thus also the fields are proportional
to the current. The introduced constant C is therefore also proportional to the
current. If there are several currents, one only needs to add those to obtain the
overall current, where only this sum is relevant. We summarize that for an arbitrary
path the integral is

,

where I is the sum of all currents that are enclosed by a particular path. One can
choose the proportionality constant as one wishes, as long as one realizes that this
impacts the units for current I and field  and length , which are not yet
defined. So, one may simply choose

 , (1.55)

This is known as Ampere’s Law. It is more general, and its validity goes beyond the
example of a straight wire, i.e. it applies to any distribution of currents, which can
easily be verified by experiment. It contains everything relevant for the relation
between time-independent currents and magnetic fields. We will need to make
modifications for the time-dependent case. One can rewrite the previous equations
a little:

H ds•∫°
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 .

This is true for any surface. Therefore the integrands of the two surface integrals
have to be equal and it must hold that

 . (1.56)

Equations (1.55) and (1.56) are equivalent. One follows from the other. Both state
that currents are the cause of magnetic fields. Their significance is similar to
equations (1.20) and (1.23), which described the relation between the electric field
and charges. There is, however, a big difference: charges cause sources of the
electric field; currents cause a circulation of the magnetic field. Electrostatic fields
are always free of circulation, while we will find that magnetic fields are always
free of sources (to be more specific, that the magnetic induction or  field, which
we will need to introduce, never has sources).

If we look at the results (1.55) and (1.56) more closely, one finds that there
are some difficulties and even contradictions, which indicate that their current form
can not be correct for time-dependent systems. Imaging two charged bodies with
charges +Q and -Q, respectively, as shown in Fig. 1.22. Those bodies exert a force
on each other. If we connect the two bodies by means of a conducting wire, then
the charges have a path to follow the electric field. The result is an electric current,
originating at the positively charged body, leading towards the negatively charged
one. If we attempt to use, for instance,. eq. (1.55) in this situation, we experience
some difficulties. Since the wire is neither closed nor extends towards infinity, we
have trouble deciding if a particular path encloses the wire or not. This difficulty is
even more apparent if we use (1.56). It gives

, (1.57)

This implies that the current density is source free. Obviously this is not so, as the
current density originates at the charged body. During this process the charge
changes as some of it is transported by the current to the other body. To enable us to
discuss this in more detail, we will study the principle of conservation of charge in
section 1.10.

H ds•∫° H dA•∇×
A∫ I g dA•
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1.10 The Principle of Charge Conservation and Maxwell’s First 
Equation

Consider an arbitrary volume. Charges contained in it may flow in, or out of it.
This is the only way for the overall charge in the volume to change. The only other
possibility would be that charges spontaneously appear or disappear. Our
experience teaches us that this is not the case. This is the Principle of Conservation
of Electric Charge. 

Expressed in a more general way, we find that the overall charge in the
universe is constant (probably zero). Although there exist processes where new
charges are created, this does not change the overall charge balance, because
always the same number of positive as negative charges are created. Our
experience up to now is that naturally occurring charges always come in multiples
of an elementary charge. For instance, in the negative charge of an electron or in
the positive charge of its counterpart, the proton. It is possible that a photon creates
a pair of particles with opposite charges (for example a particle, antiparticle pair;
electron, positron or proton, antiproton). We need to mention particles with charges
that are one third or two thirds of the elementary charge (quarks) which, however,
do not change the principle of charge conservation. 

This principle is mathematically formulated as follows:

 .

Consequently

 . (1.58)

This is the continuity equation. It is an expression of charge conservation. On the
other hand

 
and therefore

. (1.59)

This means that the vector sum  is source free. Therefore, it is possible
to express it as the curl of a suitable vector field, as according to (1.40) the
divergence of any curl vanishes:

 . (1.60)

At this point it is plausible to identify the vector  with the magnetic field intensity
. In the time-independent case this would correctly lead to Ampere’s law (1.55).

It was Maxwell who recognized that this is incorrect in the general case. One
obtains Maxwell’s first equation as the correct generalization of Ampere’s law for
time-dependent processes.
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. (1.61)

The term  is the total current density. It consists of two parts the free
current density ( ) and the displacement current density 
Maxwell’s first equation fixes the inconsistencies we experienced at the end of the
previous section. There exists a field between the charged bodies. The electric field
changes as the current flows and causes the displacement current which closes the
circuit  For every closed path we have

. (1.62)

The result of the integration becomes unique. That is, for a given path, it does not
depend of the chosen surface area. If this were not the case, there would be no
Stokes integral theorem. Let it be also noted that this can also be shown using
Gauss’ law and the relation .

To derive eq. (1.59), we have used the relation  and thereby made a
generalization, which is not quite natural and should not be made without
qualifications. We have derived the equation  from Coulomb’s law for
charges at rest. Notice that the reverse conclusion may not be made. It is not
necessarily possible to derive Coulomb’s law from . Field lines
originating at a charge could be organized in an unsymmetrical way, for which
Coulomb’s law does not apply anymore, still leaving the total flux equivalent to the
charge. We do not need to assume this kind of field for charges at rest, since due to
symmetry considerations no particular direction is favored. That is the reason why
Coulomb’s law applies to charges at rest. In order to find it, one needs to apply the
symmetry argument to . For moving charges the situation is more
complicated. The symmetry consideration is not valid anymore because the field of
a moving charge is actually not spherically symmetric and Coulomb’s law is not
valid in this case. Still,  is applicable or , respectively.
Although our starting point was Coulomb’s law as some basic fact, one now finds
that the relation  is more basic and more generally applicable. It could
even be seen as the real definition of charge, because for every charge, moving or
at rest, belongs a corresponding flux and there is no flux without charge. Fig. 1.23
gives a qualitative picture of a charge at rest and one that moves with a uniform
velocity. The field of the uniformly moving charge can be derived from that of the
charge at rest by facilitating the Lorentz contraction. The distortion of the field can
only be understood in the context of the Theory of Relativity. Nevertheless, this
distortion is correctly described in Classical Electrodynamics. The magnetic forces
caused by moving charges are exactly the consequences of the distortion of the
electric field. The magnetic forces are thus also of electrical nature. They are based
on the changes of the electric field due to motion. The distortion of the field of a
moving charge is a relativistic effect, that is, it is noticeable at very high speeds, i.e.
close to the speed of light and it would disappear if the speed of light were not
fini te.  In this  case there would be no magnetism. Because Classical
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Electrodynamics already contains magnetism, which is actually a relativistic effect.
It could survive the changes brought into physics by the Theory of Relativity
without changing it. Let us also note here that the field of a moving charge is not
irrotational. (A very worth reading discussion of those issues can be found in [1]).

Besides the vector , we introduce the vector , the magnetic flux density
or magnetic induction. For vacuum one has 

 . (1.63)

The forces exerted by magnetic fields are actually based on . It would be most
appropriate to call  the magnetic field strength, what some authors actually do.

 is the permeability of free space. Key to comprehension of the so far described
magnetic forces is the recognition that they only apply to moving charges. 

. (1.64)

This is the Lorentz force. Is there also an electric field, then one gets the overall
. (1.65)

The Lorentz force is perpendicular to  and . This results in strange effects. For
instance parallel currents attract each other (Fig. 1.24). The current I2 (I1) causes a
field  ( ) at the location of the current I2 (I1) and this field induces the Lorentz
force  ( ). It is interesting to study the force of a current carrying wire loop
that is placed in the field of another current (Fig. 1.25). The current I causes the
field  at the location of the loop S that carries the current Is. The Lorentz force
acts only on currents that are perpendicular to , and causes a torque, in much the
same way as we have described for the compass needle. As far as we know today,
all magnetic materials are characterized by currents that circulate within them
(Ampere’s molecular currents). This is apart from phenomenons related to the
spin–a basic property of elementary particles. The spin of those particles causes
them to act as if they carried circulating currents. We conclude that there are no
magnetic charges and all magnetic forces are ultimately Lorentz forces
(disregarding again the effects of the spin of the elementary particles).

Fig. 1.23         
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1.11 Faraday’s Law of Induction

In addition to the above described experience, there is one more basic property.
Faraday’s law of induction, usually referred to as the Law of Induction, formulates
this phenomenon in the following way:

If a magnetic flux through the surface of a closed loop changes over time,
then there will be an induced voltage in that loop, which is proportional to the
change of the magnetic flux.
By magnetic flux we mean the flux of the magnetic induction

(1.66)

The voltage that we find in a closed loop is the electromotive force (EMF) and is
given by the integral

 , 

which vanishes in the electrostatic case. Here, this is not the case and one has now

 , (1.67)

where we have already decided that a possible proportionality constant is
dimensionless and equal to 1. One may write as well

 .

Since this is true for every surface A, one may also write

 . (1.68)

The two equivalent relations (1.67) and (1.68) represent Maxwell’s 2nd equation, in
integral and differential from, respectively.
One takes the divergence of both sides in eq. (1.68) to find

 .

Fig. 1.25   
 

I

B

Is

S

F

F

Fig. 1.24     

I1

v v

I2

B2 B
1

F
21 F

12

   φ B Ad•    ∫=

E sd•∫°

   E sd•∫° t∂
∂ φ   –=

E sd•∫° E∇×( ) Ad•
A
∫ t∂

∂ B Ad•
A
∫–

t∂
∂ B Ad•

A
∫–= = =

   E∇×
t∂

∂ B   –=

E∇×( )∇•
t∂

∂ B∇•–
t∂

∂ B∇•– 0= = =



1.12   Maxwell’s Equations 31

Note that  and  commute. Consequently, the divergence of  may only
be a time-independent spatial function:

 . (1.69)

From our experience, we conclude that 
 , (1.70)

and therefore
 . (1.71)

The field lines of B are thus free of sources and sinks. As previously determined,
this means that there are no magnetic charges at which field lines could begin or
end. A frequent conclusion is that this means magnetic field lines have to either
close on themselves, or extend into infinity. This conclusion is, however, incorrect.
There are examples for fields whose lines do neither (a more detailed discussion on
this is found in Chapter 5, Section 5.11.2, which deals with magnetostatics).

1.12 Maxwell’s Equations

In the previous Sections we have introduced all of Maxwell’s equations. There is a
differential and an integral form for each of the those four equations. We
summarize them here, side by side.

These are two vector and two scalar equations for five vector quantities (E, D, H,
B, g) and one scalar quantity ( ). Obviously, since every vector equation is
equivalent to three scalar ones, there are more unknowns (5 times 3 + 1 = 16) than
equations (2 times 3 + 2 = 8). If we consider, as we have seen in the previous
Section, that the relation  follows from Maxwell’s second equation, or
more precisely,  serves as an initial condition within the system of
Maxwell’s equations, then the discrepancy grows even larger. Now we have 7

differential form integral form

(1.72)
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equations for 16 unknowns. That means, to supplement Maxwell’s equations we
need 9 more. At least for vacuum, we have met some of those equations already:

 . (1.73)

If we deal with matter in general, then we need to describe D in some form as a
function of E and B as a function of H (which we will discuss later in more detail).
These relations are called the constitutive relations:

 . (1.74)

We gain another equation from the fact that electric currents in conductors are
caused by electric fields and thus somehow depend on the electric field

 . (1.75)

In the simplest case, and usually the most important one finds that the volume
current density  is proportional to E (this is Ohm’s law) 

 . (1.76)

The coefficient  is the specific electric conductivity. Summarizing, one can say
that (1.74) and (1.75), supplement Maxwell’s equations (1.72), making it a
complete system of equations.
Maxwell’s equations are linear. This is a consequence of the superposition
principle for both the electric and the magnetic fields (for the magnetic field, it is
contained in the reflections that led to (1.55)). Linearity is the formal expression
for the superposition principle. Linearity is also important for practical
applications, that is, to solve specific problems. Linear equations are much easier to
solve than non-linear ones. Linearity is lost when the supplementing “material
equations” (1.74) and (1.75) become non-linear, which is a possible scenario.
Maxwell’s equations exhibit a high degree of symmetry, which gives them kind of
an aesthetic charm. This symmetry is particularly obvious in the case of vacuum
with no charges or currents present. Here we get

We will see that this symmetry results in important consequences. A changing
electric field ( ) causes a magnetic circulation ( ), which is also varying
in time and causes an electric circulation ( ), etc. This describes the
mechanism of generation and propagation of electromagnetic waves (Fig. 1.26), to
which radio waves, light, heat radiation, etc. owe their existence.
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This symmetry is somewhat lost when we introduce charges and currents.
This result is somewhat unsatisfactorily. At least as far as we know today, this
asymmetry is based on the fact that there are no magnetic charges which would
serve as sources of the magnetic field. There are a number of scientists who do not
believe that this is the last word on that matter. In fact, it is conceivable that such
magnetic charges, though not yet discovered, do exist. Thus the search for such
charges continues. If they exist, this would require one to make modifications to
Maxwell’s equations. It is a useful exercise to determine how this would need to be
done. Besides the spatial density of electric charges ( ) there would be magnetic
charges ( ). Both could cause currents ( ). In addition to the principle of
conservation of electric charges 

, (1.78)

we would require the conservation of magnetic charges

. (1.79)

Then
(1.80)

and
 . (1.81)

This gives us

.

.

Those equations can be satisfied with the Ansatz

Fig. 1.26
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,

.

We know that b represents H. In a similar way, to arrive correctly at Maxwell’s 2nd

equation from , we identify a as representing -E. The overall result would
then be: 

Should magnetic charges be discovered some day, Maxwell’s equations were to
modify in the indicated way. Some further remarks on magnetic charges are treated
in Appendix A.2.

We now return to Maxwell’s equations without magnetic charges. They
describe a vast abundance of phenomena, with which we will involve ourselves in
the following. This is usually done step by step and we will proceed in the same
manner. That is to say, we will not attempt to solve the full system of Maxwell’s
equations right way, but start with fields that do not exhibit any time dependency.
Then we get

 .
Two of those equations depend solely on electrostatic quantities and we already
know these equations

 .
They define the electrostatics, which will be our first area of study. Of course do
we need to include the relation . The other two equations

define the magnetostatic case, if we add the constitutive relation between  and
. This topic will occupy the second principle part of this book. Only in the last,

the third principle part will we deal with the complete set of Maxwell’s equations
where we cover topics like skin effect, wave propagation, radiation, antennas, etc.

 

.
(1.82)
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We base all this on our current state of knowledge, which is not necessarily
final. It is always possible that new discoveries some day will mandate us to
modify our understanding and our theories. We already came across several
questions, for which there are currently no final answers, such as whether or not
Coulomb’s law is exact, or whether magnetic charges actually do exist, etc. This
lies within the nature of science. Of course even though our current answers may
only be preliminary, they are nevertheless interesting and important enough to
study.

1.13 System of Units

Initially, we left open the practical question of which units one should employ for
the various quantities That is, which system of units one should introduce. We will
now remedy this situation.

There are quite a number of different systems of units in use and there are
many discussions on which one would be best for whatever reason. Those
discussions are not profitable and we will refrain from doing it here. This book will
use a single system consistently, namely the MKSA system, which is used
internationally, and which in some countries is mandated by law.

Every system of units is based on basic units from which other quantities are
derived. The MKSA system got its name form the fact that meter, kilogram,
second, and Ampere were chosen as its basis. Naturally, every basic unit needs a
firm definition, i.e. it has to be defined through a reference or a “normal”. The term
needs a clear definition and experimentally, the quantity needs to be readily
reproducible. The normal could be of a physical prototype or a natural
phenomenon. For the MKSA system the four basic units are defined in the
following way:

1. 1 Meter (m): Since 1983, one meter is defined by the propagation time 
of light. Specifically, the distance that light in vacuum travels during

.

Previously (1889 - 1960) the definition of the meter was in terms of a 
prototype bar that was kept in Paris (France), which consisted of 90% 
platinum and 10 % iridium. This prototype of the meter was supposed to 
be exactly one ten-millionth part of the distance from an Earth pole to 
the equator (but it was not accurate). Between 1963 and 1983 the defini-
tion was based on spectroscopy, i.e. the measure of the spectral line of a 
particular wave length of Krypton-86.

2. 1 Second (s): Recently, the definition of time is also based on spectros-
copy, namely the time span of 

9192631770 periods
of a particular radiation of caesium. Before that, 1 second was defined as 
the 86400th fraction of a mean solar day of the year 1900.

1
299792458
--------------------------s
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3. 1 Kilogram (kg): It was, and still is defined as the mass equivalent to 
that of a prototype consisting of platinum and iridium which is kept in 
Paris (France).

4. 1 Ampere (A): The definition used to be that of a current, exactly con-
stant in time, which in one second deposits 1.118 mg = 1.118 • 10-6kg of 
silver from an aqueous solution of silver-nitrate. The unit defined in this 
way is now called the international Ampere and differs slightly from the 
so-called absolute Ampere, which is the one that is used today as the 
basic unit for current. To understand this definition, we need to remem-
ber the attracting force between two parallel, current carrying, conduct-
ing wires, described in Section 1.10 (see also Fig. 1.24). If we take two 
parallel wires of infinite length at a distance r from each other that carry 
the currents I1 and I2 then the magnetic field B1 that I1 produces at the 
location of the current I2 is

 . (1.83)

This results from the definition of  by (1.63) and from equations (1.55) or
(1.56), exploding the symmetry of the problem. If we choose for instance
(1.55) we get

 ,

that is

 .

The force exerted on the second wire follows from (1.83), together with
(1.64). The current in a wire consists of moving charges. The force on a single
charge in the second wire that moves with velocity v is

 ,

and the overall force on the whole wire is

 , (1.84)

where the sum extends over all charges in wire 2. This is an infinite sum as the
wire is infinitely long and thus contains an infinite number of charges. How-
ever, the force per unit length remains constant.

 . (1.85)

The expression  is nothing more than the current I2.
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 . (1.86)

Because of the definition of the current as the charge per unit of time that
crosses a particular cross section we find the overall relation

 . (1.87)

Next, we consider two infinitely long, infinitesimally narrow, straight wires at
a distance of 1m apart. We also require the wires to be parallel and carry the
same current . If each one exerts the force of  Newton
per meter of its length, then the related current amounts to 
(Ampere). Here, Newton is the unit of force in the MKS-system.

This results in 

 .

With this definition of the basic unit Ampere, we have also defined :

 . (1.88)

We have now introduced those four basic units. We will derive the other units from
these. There are the purely mechanical units. The unit for force was already used:

1 Newton =  , 

the unit for energy

1 Joule = , 

and the unit for power

1 Watt = .

This leads us to the electrical units. From the definition of current,

 

we can derive the unit for charge
1 Coulomb = .

Note the interesting fact that the charge is just a deduced quantity, although it is of
fundamental importance and was the actual starting point of our discussion.
Charges occur in nature only in multiples of the so-called elementary charge
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(disregarding quarks). This charge is very small, and just a tiny fraction of one
Coulomb, namely

 . (1.89)

By defining e in this way, we set the charge of an electron to -e and that of a proton
or positron to +e.  Because of 

 ,
The unit of the electric field is 1N/C, and thus the unit of the potential becomes
1 Nm/C ( ). It is called Volt:

.

Therefore

.

From Coulomb’s law

  ,

one derives the dimension for  

  ,

The numerical value can be obtained by measurement. It depends on the chosen
system of units. In our system of units

 . (1.90)

The previously mentioned unit for the electric field (1 N/C) may also be expressed
as 1 V/m. This settles the units for the electric displacement (D) to 

  ,

which is obvious from the relation
 .

This definition allows us to write  in a different form

  ,

and finally

 . (1.91)

When comparing the definitions in (1.90) and (1.91) it strikes us that the product of
 and has a purely mechanical dimension.
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  ,

The numerical value for this gives

 , (1.92)

that is the square of the speed of light. This is no coincidence. Historically, this was
the first indication that light is of an electromagnetic nature, which will occupy us
in later sections.

The unit for current density is 1A/m2. The unit for the magnetic field intensity
H results from Maxwell’s first equation (1.61) to 1A/m. Because of the relation

, this determines the units for B to 1Vs/Am • 1A/m.= 1Vs/m2. This unit is
called Tesla

1 Tesla =  .

The unit for the magnetic flux is expressed in  Weber and results to

 .

Another derived unit is that for Resistance

1 Ohm =  ,

for Capacitance

1 Farad =  ,

and for Inductance

1 Henry =  .

Those quantities have not been introduced yet and we will need to make up for this
later. The definitions for 1 Henry and 1 Farad are also used to express µ0 in Henry
per meter (H/m) and ε0 in Farad per meter (F/m).

Every physical unit has to be understood as the product of a numerical value
and a unit:

quantity = numerical value • unit
Examples for this are found in equations (1.88), (1.89), (1.90), and (1.92) of this
section. The usual rules for calculations apply for such products, which should be
clear from the way we derived the relations. 

Finally, to conclude this section, we will state some useful conversion factors
towards other frequently used units of measurement.

1 Tesla = 1 T = 104 Gauss
1 Maxwell = 1M = 10-8 Weber
1 electronvolt = 1 eV = 1.6 10-19 Joule .

µ0ε0[ ] Vs
Am
-------- As

Vm
-------- s

m
---- 

  2
= =

   1
µ0ε0
----------- 9 1016⋅ m

s
--- 

  2
c2   = =

B µ0H=

1T 1 Vs
m2
-------=

1 Vs
m2
------1m2 1Vs 1 Weber 1Wb= = =

1Ω 1V
A
---=

1F 1C
V
--- 1As

V
------ 1 s

Ω
----= = =

1H 1Vs
A
------ 1Ωs= =



2 Basics of Electrostatics

2.1 Fundamental Relations

The fundamental relations of electrostatics were introduced in Chapter 1. Before
discussing electrostatics in more detail, we summarize the basic results. 
The force between two charges Q1 and Q2 is given by Coulomb’s law:

 . (2.1)

This, in turn, determines the electric field that a charge Q1 at location  produces
at location  in free space

 , (2.2)

while the electric displacement is defined to be

 . (2.3)

For an arbitrary charge distribution it follows that
 . (2.4)

or 
 . (2.5)

For charges at rest (this is what is discussed in this chapter) one has
 (2.6)

or 
 . (2.7)

This is the basis for defining a potential function

 . (2.8)

Conversely, the electric field is given by
 . (2.9)

Because of (2.5), it is also true that

 . (2.10)

Using (2.9) one obtains

F12
Q1Q2
4πε0
-------------

r2 r1–

r2 r1–( ) 3
--------------------------⋅=

r1
r

E r( )
Q1

4πε0
-----------

r r1–

r r1–( ) 3
------------------------⋅=

D r( ) ε0E
Q1
4π
------

r r1–

r r1–( ) 3
------------------------⋅= =

D Ad•∫° Q ρ τd
V∫= =

D∇• ρ=

E sd•∫° 0=

E∇× 0=

ϕ r( ) ϕ0 E sd•
r0

r
∫–=

E ϕ∇–=

E∇• ρ
ε0
----=

ϕ∇–( )∇• ρ
ε0
----=
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or

 . (2.11)

This is Poisson’s equation, which is going to play a central role . For the specific
case of , one obtains Laplace’s equation

 . (2.12)

Expressed in Cartesian coordinates

,

that is

 . (2.13)

The symbols  or  represent the Laplace operator also referred to as
Laplacian.

2.2 Field Intensity and Potential for a given Charge 
Distribution

If one places a point charge  at location , one finds the electric field intensity
to be

(2.14)

or written in terms of its components:

 . (2.15)

To calculate the potential we will start from the general definition:

 , (2.16)

where  is an arbitrarily chosen reference potential evaluated at point 
(reference point). To calculate , one needs to evaluate the line integral along
some path from  to . Since the integral is independent of the chosen path, one

  ϕ∇( )∇• ∇2ϕ ∆ϕ ρ
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ρ 0=
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--------ϕ ∂2
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-------ϕ+ += =

∇2 ∂2

∂x2
-------- ∂2

∂y2
-------- ∂2

∂z2
-------+ +=

∇2 ∆

Q1 r1

E r( )
Q1

4πε0
-----------

r r1–

r r1– 3
-------------------⋅=

Ex
Q1

4πε0
-----------

x x1–

x x1–( )2 y y1–( )2 z z1–( )2+ + 3
-----------------------------------------------------------------------------------⋅=

Ey
Q1
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-----------

y y1–

x x1–( )2 y y1–( )2 z z1–( )2+ + 3
-----------------------------------------------------------------------------------⋅=

Ez
Q1

4πε0
-----------

z z1–

x x1–( )2 y y1–( )2 z z1–( )2+ + 3
-----------------------------------------------------------------------------------⋅=















ϕ ϕB E sd•
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has the freedom to choose any convenient path as proven in the previous chapter
(Section 1.6 - 1.8).

We will take advantage of this freedom and simplify an otherwise difficult
task. We choose the path indicated in Fig. 2.1. Starting at our reference point ,
we head towards the charge at  until we reach the concentric sphere around 
on which our field point  lies. This is at point , where 

 .

Then we continue on the sphere, centered at the location of , towards the field
point  until we reach it. We write the integral

 

 

 ,

 . (2.17)

If we decide to pick for a reference point at infinity, then

 . (2.18)

We use this to calculate the electric field 
 ,

and find the field components according to (2.15).

Fig. 2.1      
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ϕB 0=
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-----------------------------

Q1

4πε0 x x1–( )2 y y1–( )2 z z1–( )2+ +
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If  one has  many point  charges   a t  the  locat ions
, then, because of the superposition principle (which applies not

only to the field, but also to the potential), one uses

 . (2.19)

In general, the charge distribution may be continuous. When the charge density is
given as a function of the location , then 

 , (2.20)

where  is the volume element in the space of the vector , i.e.
 . (2.21)

The corresponding electric field is

 . (2.22)

Notice that the gradient operator operates on  only and not on . To highlight
this, the del operator is marked with the index . Now

 

  , (2.23)

and finally 

 . (2.24)

Sometimes one deals with situations where there are charges distributed on
surfaces or line elements (surface charge, line charge). One then defines the
surface charge density  as the charge per unit area,

 . (2.25)

The associated potential is then given by

 , (2.26)

and the electric field

  . (2.27)

Similarly, the line charge density or linear density q is defined as the charge per
unit length,

Q1 Q2 … Qi …, , , ,
r1 r2 … ri …, , , ,

ϕ
Qi

4πε0 r ri–
----------------------------
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∑=

r

  ϕ r( ) 1
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τ'd r'
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2 x x'–( )2 y y'–( )2 z z'–( )2+ + 3
---------------------------------------------------------------------------------– r r'–
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------------------–= =
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σ
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E r( ) 1
4πε0
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 , (2.28)

with an associated potential 

 , (2.29)

and the electric field

 . (2.30)

In principle, these formulas allow for the calculation of the potential and electric
field for an arbitrary distribution of point charge, line-, surface-, and volume charge
densities, as well as any combination thereof. However, carrying out the integrals is
not always easy for real-world problems, and the mathematical difficulties may be
appreciable. Nevertheless, it is frequently possible to simplify the task by taking
advantage of symmetries. This is illustrated in the next section via some specific
examples.

2.3 Specific Charge Distributions

2.3.1 One-dimensional, Planar Charge Distributions

In this case,  is a function of only one Cartesian coordinate (e.g. x):
 .

Here, it is better not to use the general integrals of the previous section, but start
with considering the symmetry.  and  have to depend on x only and can only
have an x-component. For the same reasons, the potential can only have an
x-dependency. This enables us to start with the relations

 (2.31)

and

 , (2.32)

which allows one to calculate  and  by integrating once and twice,
respectively. Thus

 (2.33)

It is left as an exercise for the reader to determine how the constant of integration
 needs to be chosen, in order to arrive at the result.

q dQ
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-------=
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r r'–
-------------- l 'd∫=
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E D
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--------ϕ ρ x( )

ε0
----------–= =
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Dx x( ) Dx a( ) ρ x'( ) x'd
a
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2
-- ρ x'( ) x'd

∞–

x
∫

1
2
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x
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∫–= =
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2.3.2 Spherically Symmetric Distributions

If the charge distribution depends solely on the distance r to a center

 , (2.34)

then it is spherically symmetric and 
 .

It would be very difficult to calculate  and  by using the general integrals.
Exploiting the symmetry simplifies the problem dramatically, however. One may
assume that  and  only have components that point towards or away from the
center (radial components  and ) , and that these depend on r only. One
surrounds the center of symmetry with a concentric sphere, which allows one to
apply relation (1.20), and immediately solve this problem:

that is

or

(2.35)

and

 . (2.36)

Finally, if we also choose  for the limit of , then

 . (2.37)

On the other hand we have 

and thus

 . (2.38)
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This is nothing other than Poisson’s differential equation for the specific case of
spherical symmetry. In a later section, we will find that 
is nothing else than the radial part of Laplace’s operator .

To illustrate this, we use a simple example. Suppose a sphere with radius 
is filled with the uniform volume charge density . There shall be no other
charges. The electric field then results in

For the potential one finds

A plot of these relations is given in Fig. 2.2. 
Conversely, it is also possible to find the charge density for a given potential.

One might ask, what charge density gives the spherically symmetric potential
( )? If one wants to proceed formally, then one may use eq. (2.38) to
calculate .
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 .

The result is thus that . This not entirely correct. In order to differentiate,
one needs to exclude the origin. However, this is where the charge  is
located, and it is precisely this charge that creates the given potential. This example
illustrates that one needs to be mathematically very careful when dealing with
point charges. To remedy this, we will introduce the Dirac  function in a later
section. It enables one to formally treat point charges in the same way as other
distributions. The point charge could also be somewhat hidden and thus less
obvious than in this trivial example. Take, for instance, the potential 

 .

This is the so-called shielded Coulomb potential (in contrast to the ordinary
Coulomb potential ( )). It is relevant for the theory of electrolytes and
plasmas, which will not be covered here. The volume charge density for this
potential is:

 

. 

This allows one to calculate for example, the charge within a sphere of radius r. 

One finds the electric field intensity

 .

From this we obtain the charge inside a sphere of radius r:

 .
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There appears to be a contradiction. The integration over the charge density led to a
charge that is smaller by . The puzzle is resolved if one looks closely at  for a
very small radius:

 . 

This is the field generated by a point charge located the origin (or the potential
 of a point charge at the origin) for very small radii. This point charge is

not included in our expression for  and in the integral over it. This clears up the
apparent contradiction. Again, it appears that is necessary to be very careful. The
total charge outside of the origin is just , the overall charge is then zero. The
charge outside cancels the point charge, and shields it, which is why we refer to this
as a shielded Coulomb potential.

2.3.3 Cylindrically Symmetric Distributions

If the charge density depends solely on the distance r from an axis, then this
distribution is deemed to be cylindrically symmetric (Fig. 2.3)

(2.39)

with

 . (2.40)

If we replace the concentric sphere of Section 2.3.2 by a coaxial cylinder, then we
may proceed in much the same way as before. Starting from 

,

now, on a per unit length basis, we obtain:
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or

, (2.41)

where  represents the component of  which points away radially from the
axis. This is the only component of , which results from the symmetry of the
problem. From this we get

, (2.42)

and

 , (2.43)

if the potential  for . Then 

that is

 . (2.44)

This is again Poisson’s equation, now for this specific case of cylindrical
symmetry. As an example, consider a cylinder of radius  with uniform charge
density . There shall be no other charges. Then the electric field is

For the potential, under the assumption that , one finds

2πrDr ρ r'( )2πr'dr'
0

r
∫=

Dr
1
r
-- ρ r'( )r'dr'

0

r
∫=

Dr D
D

Er
1

ε0r
------- ρ r'( )r'dr'

0

r
∫=

ϕ 1
ε0
---- 1

r'
-- ρ r''( )r''dr''

0

r'
∫ 

  r'd
rB

r
∫–=

ϕ 0= r rB=

r∂
∂ϕ 1

ε0r
------- ρ r''( )r''dr''

0

r
∫–=

r
r∂

∂ϕ 1
ε0
----- ρ r''( )r''dr''

0

r
∫–=

r∂
∂ r

r∂
∂ϕ

 
  ρ r( )r

ε0
-------------–=

  1
r
--

r∂
∂ r

r∂
∂ϕ

 
  ρ

ε0
----  –=

r0
ρ0

for  r r0:≤ Er r( ) 1
ε0r
------- ρ0r'dr'

0

r
∫

ρ0
2ε0
--------r= =

for  r r0:≥ Er r( ) 1
ε0r
------- ρ0r'dr'

0

r
0

∫
ρ0r0

2

2ε0
----------- 1

r
--⋅= =

rB r0>

for  r r0:≤ ϕ Er r'( )dr'
rB

r
∫– Er r'( )dr'

rB

r0
∫– Er r'( )dr'

r0

r
∫–= =

                    
ρ0r0

2

2ε0
-----------

r0
rB
-----ln–

ρ0
2ε0
--------

r2 r0
2–

2
---------------- 

 –=



50 Basics of Electrostatics

 .

These relations are shown in Fig. 2.4. 
An interesting limit is obtained in the case of a line charge at the axis. In this

case,  approaches zero, but it does this in a way that the product 
remains finite. The , therefore, needs to become infinite. In this case the field
becomes 

, (2.45)

and

 , (2.46)

where  is the radius where  vanishes. Here,  is called the
logarithmic potential, and is typical of the straight and uniform line charge. The
potential shown in Fig. 2.4 is not a true logarithmic potential because it is not
logarithmic for every radius r.
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2.4 The Field Generated by two Point Charges

The field generated by two point charges as a special case from the potential of
eq. (2.19)

 (2.47)

Taking the gradient gives in column vector notation:

(2.48)

We will use a coordinate system according to Fig. 2.5 and then simplify above
expression somewhat. 
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(2.50)

A remarkable fact is that there exists a point where the field vanishes. This is
a special point and, because of the frequently mentioned analogy to flux problems,
is called the stagnation point. To calculate its coordinates , one sets all
three components of  in eq. (2.50) equal to zero and then solves this equation for

, . We skip this simple calculation and just give the result:

(2.51)

 ,

.
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The stagnation point always lies on the straight line connecting the two charges.
For charges of the same sign, it lies between the two charges and closer to the one
with the smaller magnitude. For charges of opposite signs, it lies outside closer to
the charge with the smaller magnitude. 

The stagnation point exhibits a strange property, namely that force lines cut
one another here, which is possible only because the field vanishes at this specific
point. 

Knowledge of the location of the stagnation point is rather useful in being
able to generate a qualitative picture of the field. Let us investigate the case of
opposite charges as shown in Fig. 2.6, where for example, , ,

. Some of the force lines which originate at  end at . Since it was
given that , not all can end at . Those which can not end at the other
charge, extend to infinity. This is plausible, as from a great distance the
configuration has to appear as that of a point charge of value . There are,
therefore, two kinds of force lines: those that end at , and those extending to
infinity. They can be found in the different regions of Fig. 2.6, which would
provide the full 3D picture if rotated around the x-axis. The border of the two
regions is made up of force lines that run through the stagnation point and from that
point on, they can no longer be uniquely traced. Those lines of force are sometimes
referred to as separatrices, i.e. as lines that separate different regions. Another
interesting task is to analyze the equipotential surfaces (see Fig. 2.7).
Again, the equipotential surface which passes through the stagnation point plays a
prominent role. It is also called separatrix. It separates the space in three different
regions. The first region encloses just one charge, the second just the other, and the
third region encloses both charges.

For charges of the same sign, we show the electric force lines and the
equipotential surfaces in Fig. 2.8 and Fig. 2.9. The separatrices are highlighted

It is possible to show that the angle between those equipotential surfaces
which pass through the stagnation point and the x-axis is the same in both cases
and for all charges. One finds

 .

Q1 0> Q2 0<
Q1 Q2> Q1 Q2

Q1 Q2> Q2

Q1 Q2+
Q2

Fig. 2.6

separatrix

Q2

Q2
Q1
------ 1

10
-----–=

x
S

Q1

αtan 2=  , α 55°=



54 Basics of Electrostatics

This is even true for rotationally symmetric charge distributions of all kinds, not
only for the case of the two point charges discussed here.

If there are more than two charges, the configurations can become rather
complicated. Then, knowing the location of the stagnation points, is a particularly
useful means to understand the structure of such a field.

For future purposes, we investigate here the equipotential surface  for
the special case of two opposite charges, where 

Fig. 2.7

Fig. 2.8
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y

Q2Q1 S

Q1
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or

Taking the square gives

or

which is the equation for a sphere. Its characteristics are illustrated in Fig. 2.10. As
before, we assumed . The distances of the charge from the center of the
sphere are

(2.52)

(2.53)

From this, we find
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(2.54)

and

 , (2.55)

that is, the product of the two distances equals the square of the radius of the
sphere. We will use this result when we discuss image charges.

Also interesting is the case of opposite charges having the same magnitude. 

that is
 

Based on eq. (2.51), the stagnation point has now moved to infinity. All force
lines  that originate at  (if  is positive) end at . This results in a field as
illustrated in Fig. 2.11, and is called a dipole field. One can assign a dipole moment
to these charges (Fig. 2.12). The dipole moment is a vector quantity which points
from the positive to the negative charge, whose magnitude is

,

where
(2.56)
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(2.57)

 . (2.58)

If we let Q approach infinity and d approach zero in such a manner that p
remains finite, then we have created an ideal dipole. It will be discussed in detail in
the next section.

2.5 The Ideal Dipole

2.5.1 The Ideal Dipole and its Potential

Consider a charge  be at location  and a charge  located at . The
dipole moment is (see Fig. 2.12)

 .

Imagine increasing Q and decreasing  at the same time, in such a way as to
keep  fixed. The related potential for the charges is

 .

In terms of the Taylor expansion:

 .

The gradient operator is marked with the index  to express the fact that the
derivatives are with respect to the components of , The potential is now
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having used the fact that 

 .

Finally we get for the potential

 , (2.59)

where  is the observation point and  the location of the dipole . Using the
angle  between  and  as illustrated in Fig. 2.13, we write

(2.60)

The dipole field shall be discussed in more detail. It is rotationally symmetric
around the axis parallel to the orientation of . We choose that to be the z-axis of a
Cartesian coordinate system (Fig. 2.14). For this situation one obtains

 ,
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(2.61)

Because of the rotational symmetry, it is sufficient to calculate the field in a plane,
e.g., for the x-z-plane (y=0) (see Fig. 2.15).

(2.62)

If we transform to spherical coordinates ( ) then the azimuthal component
vanishes. The remaining components are:

(2.63)

All lines of force pass through the origin. This may initially seem surprising, but is
quite plausible if we consider Fig. 2.15 as having emerged as the limit from
Fig. 2.11. 
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Oftentimes, one deals not with individual dipoles, but rather a collection of
dipoles distributed over a volume, surface, or a line, more or less densely filled
with dipoles. Like for potentials for volume, surface, or line charges, where one
employs the superposition principle to integrate over the potentials of point
charges, one similarly makes use of the superposition of the potentials (2.59) of the
“point dipole”.

2.5.2 Volume Distribution of Dipoles

If the dipoles are distributed within a volume, the resulting volume density is
defined by the quantity

 .

This is the polarization, which turns out to be an important quantity. This
distribution generates a potential

(2.64)

This expression leads to interesting consequences. We start by considering the
following integral

where we have used the vector formula
 .

Thus

 . (2.65)

Comparison of this equation with equations (2.20) and (2.26) reveals that it is
possible to think of a volume distribution of dipoles as the result of superposition
of a volume charge distribution and a surface charge distribution, namely by

(2.66)

P dp
dτ
------=

ϕ
P r'( ) ∇r

1
r r'–
---------------• τ'd

4πε0
-----------------------------------------------∫–=

 + 
P r'( ) ∇r '

1
r r'–
---------------• τ'   d

4πε0
----------------------------------------------------∫=











1
4πε0
------------ ∇r' P r'( ) 1

r r'–
--------------• τ'd∫

                  1
4πε0
------------

∇r ' P r'( )•
r r'–

------------------------- τ'd∫
1

4πε0
----------- P r'( ) ∇r '

1
r r'–
--------------• τ'd∫+=

                  1
4πε0
----------- P r'( ) dA'•

r r'–
--------------------------  ,∫°=

fa( )∇• f a∇• a ∇f•+=

ϕ 1
4πε0
------------

∇r ' P r'( )•
r r'–

------------------------- τ'd∫– 1
4πε0
----------- P r'( ) dA'•

r r'–
--------------------------- ∫°+=

  ρ r '( ) P r '( )  ∇•–=



2.5   The Ideal Dipole 61

and

(2.67)

This important result can also be made plausible, by considering this example.
Consider the disk shown in Fig. 2.16, filled with uniform polarization . 
The charges of the dipoles inside the volume cancel each other. Only at the surface,
there will be a net, bound charge. The net charge at the top is a positive surface
charge and the one at the bottom is negative. One may think of this as the result of
two disks of uniform volume charge which are slightly displaced against each other
(Fig. 2.17). If the volume charges are  and , and the displacement is d, then
we find for the polarization  and the surface charges are . The
reason is that  is perpendicular to the surface of the disk. 

The general case is illustrated in Fig. 2.18, where the surface charge is given by

 ,

which is also the result previously obtained in a more formal manner. If the
polarization is not uniform, then the charges inside do not cancel entirely and there
remains a net volume charge. Fig. 2.19 illustrates this case. It shows a volume with
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dipoles inside. At the end of each dipole vector, there is a positive and at its
beginning a negative charge. We have

 ,

i.e., the overall flux of the polarization  over the surface is equivalent to the
negative of the charge in the volume (a vector  that points outward represents a
negative charge inside). Conversely, 

 ,

and comparison mandates that 
 .
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2.5.3 Surface Distributions of Dipoles (Dipole Layers)

If we place dipoles on a surface, one obtains a so-called double layer or dipole
layer. The name stems from the fact that it is equivalent to two layers of opposite
charges. As shown in  Fig. 2.20, let  point in the direction of . We define the
surface density of the dipole moment

(2.68)

Using (2.60), we find for the potential

 . (2.69)

With the solid angle element

(2.70)
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by which the surface element  is seen from the field point. The element of the
solid angle  is the projection of the surface element onto a unit sphere centered
about the field point, as illustrated in Fig. 2.21. It can be calculated by eq. (2.70).
Consequently,  and  are dimensionless quantities. This definition is in
analogy to that of the “plane” angle (see Section 2.5.4, on line dipoles and in
particular Fig. 2.29, which is the equivalent of Fig. 2.21 for that case).
The result is

 . (2.71)

Specifically, for a surface with uniform surface density of the dipole moment we
find

 , (2.72)

where  is the solid angle under which the uniform dipole layer appears when
looking from the field point. Confusion with the electric flux (for which  was
also used) should not be an issue.

As an example, let us consider a sphere whose surface is uniformly covered
with outwardly facing dipoles. We may picture this uniform dipole layer as
consisting of two concentric spheres with opposite charges, where the charge is
very large and the difference of their radius is very small. For all points inside the
sphere we have  (the negative sign is a result of the definition of  in
Fig. 2.20). Conversely, for all points outside we have . Therefore (for
outwardly oriented dipoles) we get

 . (2.73)

When passing through the dipole layer from inside to outside, the potential
experiences a discontinuity by .

This result can be generalized. It applies to a dipole layer of any shape and is
independent of whether  is uniform or not. Passing through a dipole layer in the
direction of the dipole increases the potential by , where  is now a function
of the location. The potential difference depends on how one passes through the
dipole layer. One proves this generalized claim by beginning with a surface that is
covered with electric charges. Let the surface charge density at a particular point be

 and the electric displacement just above that point be , and the one
underneath . One can split  and  into their parallel (tangential)  and
perpendicular (normal) components with respect to the surface (Fig. 2.22).
Now, one applies eq. (2.4) to the small cylinder shown in Fig. 2.22 whose extent
perpendicular to the surface shall be so small that the contribution of the sides of
the cylinder vanishes. The remaining contribution is
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or
 . (2.74)

Notice that we did not make any statement about the tangential components, here,
which will be covered in a later section. Now consider the case of two parallel
surfaces in close vicinity with surface charges of opposite sign (Fig. 2.23), for
which one finds:

, 

From these two equations it follows:

and 

Therefore, the normal component of D remains unchanged by the dipole layer. The
normal component of D within the layer is decreased by the value of . The
voltage when passing through the layer in perpendicular, positive direction is:
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 . (2.75)

As before, the positive direction is the direction of the dipole moment.  is finite,
while d is arbitrarily small and  is large enough to make  finite, i.e., precisely

 . (2.76)

With eq. (2.75) we obtain for the potential difference or voltage

 , (2.77)

which completes the proof.
Particularly simple is the case of two infinitely wide parallel planes with

homogeneous surface charges (Fig. 2.24). For symmetry reasons, D has an x-
component depending on x only. Fig. 2.25 illustrates (a) the field of a surface with
the surface charge , (b) the field of a surface with the surface charge , and
(c) the superposition of the two fields. For case (a) we get

 .
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or

 . (2.78)

For case (b), in a similar way one obtains

 . (2.79)

The superposition gives a non-zero field only for the area between the two planes
and it points from the positive plane to the negative one (Fig. 2.24)

 . (2.80)

Therefore

 . (2.81)

and

 . (2.82)

This equation is exact even for finite distances d, while for the general case, i.e.,
when deriving eq. (2.75), an infinitesimal distance d was required.

Here is another example on how to apply eq. (2.72). To calculate the potential
at the axis of a disk, uniformly coated with dipoles (Fig. 2.26). One needs to find
the solid angle . From eq. (2.70), follows for z>0:
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 .

For z < 0, on the other hand, 

 .

So

 .

There is a discontinuity at z = 0, where  jumps from  to ,
which results in an overall discontinuity of , as expected. The electric field on
the axis is

 

and is calculated to be

 .

 vanishes when  approaches infinity, as necessary. Now, we come back to the
case of Fig. 2.24, for which the field is non-zero only inside the layer.
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2.5.4 Line Dipoles

It is possible to cover lines with dipoles, which is illustrated by a simple example.
According to eq. (2.46), the potential of an infinitely long, straight line charge is

 .

Two parallel line charges in close vicinity form a line dipole (Fig. 2.27), with the
potential

 

 ,

which holds as long as 
. 

We now require that 
 

and 
 . 

Then , .  Furthermore ,  and
because the power series of  for , 
becomes

 , (2.83)
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where (qd) is the line dipole density (dipole moment per unit length) and  is the
potential of the infinitely long line dipole. The result should be compared to
eq. (2.60), which represents the potential of a dipole. When comparing with
eq. (2.60), replace p with (qd), use 2π instead of 4π, r instead of r2, and let

. We should keep in mind that r in eq. (2.60) represents the distance of the
field point from the dipole, while in eq. (2.83) r represents the perpendicular
distance to the line dipole.

From line dipoles that are parallel to each other, one can construct cylindrical
dipole layers (Fig. 2.28 and Fig. 2.29 ).
The surface density of the dipole moment is

and thus the potential becomes
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where the integral from A to B is evaluated along the contour C. Now,

 

is the angular element, under which the line element ds appears when looking from
the field point. Therefore

 . (2.84)

If  is constant, this gives

 . (2.85)

These two relations are equivalent to eq. (2.71) and eq. (2.72), respectively. There,
we discussed general spatial problems, while here we are dealing with the
cylindrical case, which is also called the plane case because it is independent of
one of the spatial coordinates. 

When the contour C is closed, the result is a closed cylinder. If, furthermore,
 is constant and the dipoles point outwardly, then

 

and thus

 

As expected, there is the discontinuity of the potential .
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2.6 Behavior of a Conductor in an Electric Field

One finds in nature two quite distinct types of materials. There are materials
containing charges which can move freely and there are materials where this is not
the case. The former are called conductors, while latter are called insulators (or
dielectrics). Consider the behavior of materials in the presence of an electric field
for the case of a conductor. We refrain from discussing this broad classification
further, but limit our discussion to the consequences for conductors in an electric
field, and then tackle the problem of dielectrics in an electric field.

A conductor in an electric field experiences a force, which is actually exerted
on the free charges within it. These start to move, and their motion will cease only
if 

everywhere inside the conductor and 
 . (2.86)

The surface of the conductor has to have the same potential everywhere, i.e. it has
to be an equipotential surface. Outside of the conductor,  will not vanish. Its
tangential component has to be zero at the conductor surface

 , (2.87)

as otherwise the surface would not be an equipotential surface. The perpendicular
component  of , however, will not vanish. There will be surface charges at the
surface, such that the external field does not penetrate the conductor, i.e., by
eq. (2.74) we obtain

 . (2.88)

To illustrate this, consider this simple example: We choose an infinitely wide,
conducting plate within a uniform electric field which is perpendicular to the
surface of the plate (Fig. 2.30). Depending on their sign, the free charges move in
the direction of the field or opposite to it, until they reach the surface of the plate.
This is so, regardless of whether there are only negative, positive, or both types of
charges available. The result is a surface charge which is positive on one end, and
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negative on the other. The inside is free of any field if . The field of the
surface charges exists only inside. It originates at the positive charges (sources) and
ends at the negative charges (sinks). i.e., it is exactly opposite to the external field
but of the same magnitude. The external field is thus identically cancelled. The
superposition of the fields of Fig. 2.30b and Fig. 2.24 results in Fig. 2.30c.

The thereby created surface charges are also called influence charges. They
can be used to measure the electric field by magnitude and direction. A pair of
conducting plates does the job. The plates are brought into the field while in
contact with each other. In the field, they are separated, and by trying different
orientations, one can find the direction of the field (Fig. 2.31).

To calculate the field created by a conductor, together with an external field in
full generality is rather difficult. In the following, we will solve some problems that
are, however, rather easy to solve.

2.6.1 Metallic Sphere in the Field of a Point Charge

By now, we have already calculated a number of fields and in principle, we know
their equipotential surfaces. One may imagine each such equipotential surface as
the surface of a conductor. In light of this, we have already solved many problems
of this kind. In Section 2.4, we have found that the equipotential surface  of
two point charges with opposite sign is that of a sphere (Fig. 2.10). Take a sphere of
radius , centered at the origin of a Cartesian coordinate system, and a charge Q1
to be located at (0,0,z1). Because of eq. (2.54) and eq. (2.55), a second charge Q2 at
location (0,0,z2) will make the sphere an equipotential surface provided, 

 , (2.89)
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 . (2.90)

The charge Q2 at location (0,0,z2 ) is a fictitious or image charge. Given Q1 at
location (0,0,z1), this image charge is necessary to create the very field outside of
the sphere that we are looking for. There is no field inside the sphere. The field
ends at the surface of the sphere at the correlating surface charges, which are
determined by equation eq. (2.88). Integration of these charges over the surface of
the sphere yields the charge Q2. On the sphere’s surface end all those field lines
which would end at Q2, the so-called image charge, if there were no sphere. The
resulting configuration is illustrated in Fig. 2.32. The point  is the
image point of the point  with respect to the sphere. From this stems the
term image charge and the method to solve this kind of problems is called the
method of images.

One can modify this problem slightly, and require that the sphere holds a
given charge Q. The solution results from recognizing that if one places an
arbitrary charge at the center of the sphere its surface remains an equipotential
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surface. All we need to do is to superimpose the field of a point charge (Q - Q2) at
the center to the initial field of Fig. 2.32 

A charge in front of a plane, conducting wall represents the limit of the sphere
with an infinite radius rs. It results from eq. (2.89) that the mirror or image charge
has to be located behind the wall, in the exact same distance as the real charge in
front of it, i.e., in its image point and that . The charge location
according to Fig. 2.33 is

 ,

 ,

and, therefore by equation eq. (2.89)

 ,

, 

If , then in the 1st approximation

that is
 .

It is plausible that thereby the boundary condition of constant potential or
vanishing tangential field components is met at the wall (Fig. 2.34). It is also
possible to apply this method to charges inside an angle as shown in Fig. 2.35. In
this case there are the charges +Q at for example (a,b,0) and (-a,-b,0) and the
charges -Q at (-a,b,0) and (a,-b,0). One can think of the field in the 1st quadrant
(there is no field in the other ones) being generated by those four charges and it is
easy to verify that the planes xz and yz are equipotential surfaces, which is quite
plausible. 
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Of course, it is also possible to place several charges, for example, in the
vicinity of the sphere of Fig. 2.32. This requires multiple image charges, and all
fields need to be added. In particular, it is possible to add another charge -Q1 at
(0,0,-z1)  besides the charge Q1 at (0,0,z1). This requires one to consider two image
charges: Q2 at (0,0,z2), and another one -Q2 at (0,0,-z2). In the limit of Q1 and z1

Fig. 2.34
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approaching infinity then Q2 needs to approach infinity in the same manner, while,
z2 goes to zero. That is to say, the two image charges in the said limit result in a
dipole. The field of the two charges ±Q1 in the vicinity of the sphere can be
regarded as being uniform. This suggests that the problem of a sphere in a uniform
field can be solved by means of a fictitious (image) dipole at its center. This leads
us to the next example.

2.6.2 Metallic Sphere in a Uniform Electric Field

Based on the just mentioned assumption and using the quantities from Fig. 2.36,
one makes the following Ansatz:

 .

 is the externally applied field, which at a sufficiently large distance, is not
distorted by the metallic sphere. The potential is generated by the dipole according
to eq. (2.60) and by a part that belongs to the uniform outside field. This
assumption is confirmed if we can choose p such that  is constant for all :

 .

  will, in fact, be constant for , provided one chooses 
 .

Thus

 . (2.91)

This allows one to calculate the components of : 
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 , (2.92)

 . (2.93)

 at the surface of the sphere ( ).  determines the surface charge:
 . (2.94)

This configuration is illustrated in Fig. 2.37. The maximum field is 
and is located at the two poles of the sphere. The behavior at the equator is strange,
insofar as it consists entirely of many stagnation points forming a so-called
stagnation line. The field lines there form a tip, i.e. they have no unique direction,
which is, of course, only possible at stagnation points. Furthermore, one can show
that they form an angle of 45° against the equatorial plane (Fig. 2.38).

This problem can be generalized, which gives rise to the question how this
picture might change if the sphere carried the charge Q. Thus far, the effect of the
sphere was simulated by a fictitious dipole, i.e. the charge on the sphere vanishes,
which can also be obtained when integrating σ over the surface, eq. (2.94). So, one
only needs to place an additional charge in the center of the sphere. This solves the
problem because it also creates a constant potential on the sphere. 
Instead of eq. (2.91), we now use 

 .
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Case 1: if  ,

then the stagnation lines are at circles of equal latitudes of the sphere, as shown in
Fig. 2.39.; and

Case 2: if  ,

then the stagnation lines are degenerate and the stagnation points of Fig. 2.39 move
to the poles of the sphere; and 

Case 3: if

then the stagnation points detach from the sphere, and move out into the field along
the axis through the poles (Fig. 2.40).
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2.6.3 Metallic Cylinder in the Field of a Line Charge

Consider a metallic cylinder to be located within the field of a uniform line charge
with its axis oriented parallel to the line charge (see Fig. 2.41). One can think of the
overall field outside the cylinder as being created by the given line charge q
(outside the cylinder) and its image charge, also a line charge -q (inside). The
product of the distances of the two line charges from the cylinder axis equals the
square of the cylinder radius, i.e. the piercing points of the two line charges emerge
by reflection at the circle , (where  is the radius of the cylinder). Thus

The proof is easy. Based on eq. (2.46), one first calculates the potential of the two
line charges at a field point (x,y,z)
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 .

where

and

On the cylinder wall we have

and thus

Therefore , and thereby also  are constant on the cylinder wall. The
location of all the geometrical points for which the distance ratios  from the
two fixed points is constant, as shown in Fig. 2.41 These are known in geometry as
the circles of Apollonius. The circular cross section of the cylinder constitutes one
of those circles.

2.7 The Capacitor

Suppose there are two conductors (for example metals) with a charge of opposite
sign (Q and -Q), then a field will form between them whose force lines originate on
one surface and terminate on the other. Both surfaces are equipotential surfaces, i.e.
a well defined voltage V between the two bodies is set up. This voltage is
proportional to the charge Q. The ratio  is a geometric factor called the
capacitance C. The whole configuration is termed the capacitor.

It is particularly simple to calculate the case of a plane, parallel plate
capacitor when one makes the approximation that the plates extend to infinity,
thereby neglecting fringing effects (Fig. 2.42). Then
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and

 .

The charge is
 ,

where A is the area of the plates. Therefore

 . (2.95)

One could also define the capacitance of a single conductor by using the value of
its voltage against a point at infinity. Consider a sphere of radius r, with a voltage
between its surface and infinity

so that 

 . (2.96)

Two concentric spheres form a spherical capacitor (Fig. 2.43). For this case,
the voltage is

and therefore

Fig. 2.42

σ+ + + + + +

- - - - - - σ–

Ed

V σd
ε0
------=

Q σA±=

  C Q
V

------
ε0A

d
---------  = =

V Q
4πε0r
--------------=

  C Q
V

------ 4πε0r  = =

Fig. 2.43

ri

ro

V Q
4πε0
----------- 1

ri
--- 1

ro
----– 

 =



2.7   The Capacitor 83

 . (2.97)

If one lets  and  become very large, but keep  to be very small,
then 

and the case of the parallel plane capacitor is recovered.
Two concentric cylinders form a cylindrical capacitor. Here 

and thus

 . (2.98)

This is exact only for a cylinder of infinite length l, which would make C also
infinite. Therefore, it is more practical to express the capacitance per unit length.

 .

In spherical or cylindrical coordinates, the electric field has a spatial dependency
according to eq. (2.2) and eq. (2.45):

spherical cylindrical

Electric field in general

E has its maximum at the inner
electrode

Another way to write this is as
follows:

  C Q
V
----- 4πε0

riro
ro ri–
--------------  = =

ro ri ro ri– d=

C 4πε0
r2

d
----

ε0A
d

---------= =

V Q
2πε0l
-------------

ri
rB
---- 

 ln– Q
2πε0l
--------------

ro
rB
----- 

 ln+ Q
2πε0l
-------------

ro
ri
---- 

 ln= =

   C Q
V

------- 2πε0l
ro
ri
----ln 

  1–
   = =

C
l
--- 2πε0

ro
ri
----ln 

  1–
=

E Q
4πε0r2
-----------------= E Q

2πε0lr
----------------=

Emax
Q

4πε0ri
2

-----------------= Emax
Q

2πε0lri
------------------=

Emax
CV

4πε0ri
2

-----------------  ==

 =  
Vro

ri ro ri–( )
-----------------------

Emax
CV

2πε0lri
------------------  = =

     =   V

ri
ro
ri
----ln

--------------



84 Basics of Electrostatics

This is of practical value when one wants to optimize capacitor structures.
The unit of capacitance is the Farad. The definition of C determines

 ,

as already mentioned in Section 1.13.
Two conductors form a capacitor not only when separated by vacuum, but

also if the separating medium is an insulator. In this case, one finds that the
presence of the insulator permeating the gap increases the capacitance by a
characteristic factor. With the same charge, the result is a reduced voltage, or a
reduced electric field. The voltage vanishes completely inside a conductor. Inside
an insulator it is just reduced. Both situations have a similar cause. There are also
charges inside an insulator. They, however, can not move about freely. The result is
a limited shielding of the external field. This will be discussed in the next section.

The concept of capacitance can be generalized for systems that consist of
several conductors. This will be covered in Chapter 3.

2.8 E and D inside Dielectrics

All matter consists of atoms, which themselves consist of a positively charged
nucleus and negatively charged electrons. Inside a conductor, some of the electrons
are free to move, and this leads to the effects described the last two sections. This is
not the case for an insulator (dielectrics). Nevertheless, a certain displacement of
positive charges versus the negative ones is still possible. If, in a medium, the
centers of positive and negative charges of its atoms or molecules do not coincide,
then they acquire a dipole moment. Two cases are of importance.

1. Frequently, atoms and molecules have no initial dipole moment in the
absence of an applied external field. However, an applied external field
exerts a force on the charges, which deforms the atoms (or molecules),
creating a dipole moment (Fig. 2.44). The so created dipole has its own
field which tends to weaken the external field. This process is termed
polarization of the dielectric (see also Section 2.5.2). The quantitative
measure is the resulting dipole moment per unit volume. The general
assumption is that the polarization is proportional to the electric field.

(2.99)
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This is not necessarily exact, but often times provides a suitable approx-
imation, provided that the magnitude of electric field is not too large.

2. It is also possible that the atoms or molecules possess a “natural dipole
moment”, i.e. their respective centers of charge do not coincide, even in
the absence of an externally applied field. Nevertheless, in the general
case, the substance is still not polarized without an external field. The
reason is that the dipoles are typically randomly oriented inside the
material, and cancel each other, so that the system has no net dipole
moment. When an external field is applied, a torque is exerted on the
dipoles which tries to orient them along the external field. This may not
be entirely successful. Thermal motion continually attempts to destroy
this order created by the outside field. The orientation along the external
field is therefore only partial, and less complete the higher the tempera-
ture. However, the polarization is still, approximately proportional to the
external field. That is, equation eq. (2.99) for the polarization applies for
this case as well.
There is also the case that the dipoles maintain their orientation without
an external field. Such a substance is called permanently polarized. This
is then also referred to as electret, in analogy to a permanent magnet.

The factor  in eq. (2.99) is called the electric susceptibility. Depending on
whether the material corresponds to case two (or one),  will be (not be) a function
of temperature.

We now turn to the case of a polarized, plane plate (Fig. 2.45). An outside
field Ea, is applied perpendicular to the plate. As a reaction, an opposing field Eg is
created inside. The resulting net field inside is weakened: 

Those fields are all uniform because of the plane geometry. Therefore, the
polarization 
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is also uniform. Notice that  was used. The reason is that equation (2.99) uses
the net field at the particular field point. The uniformly polarized dielectric carries
the surface charge  at its surface, as discussed in Section 2.5.2. Also, if
we just take the magnitude

 

or

 

so that
 

i.e.

 (2.100)

and

 . (2.101)

Now, we may write
 . (2.102)

Here,  is the so-called dielectric constant or permittivity of the insulator and 
the so-called relative dielectric constant, defined by

 . (2.103)

Note that  is dimensionless and defined by
 ,  (2.104)

Finally, one may complete the definition of , which up to now was only defined
for vacuum. For linear media we define the electric displacement as

 (2.105)
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Thus, because of eq. (2.102) . In the general case, when  is not
perpendicular to the insulator surfaces, we have to restrict this statement to apply to
the normal components of D:

(2.106)

This is an important statement. It gives insight into the meaning of the definition of
. The electric field intensity is discontinuous at the boundaries of the insulator, in

such a way that only the normal component of  remains continuous. Thus, the
influence of polarization is taken into account automatically.

There is no absolute necessity to make a distinction between ,  and . Not
to introduce  and solely work with the relations for vacuum is also possible. This
requires an explicit consideration of all charges, including the surface charges due
to the polarization. These cause a discontinuity in the normal component of . The
above definition of , in contrast, considers these effects implicitly. If there are
additional surface charges that are not caused by polarization, then these have to be
taken into account explicitly in any case. To better distinguish those charges, the
terms free charges and bound charges are used. Polarization causes bound charges.
Accordingly, one introduces two charge densities

 . (2.107)

Then
 

 ,

i.e.
 . (2.108)

This relation shall generally apply, i.e.  is always defined by eq. (2.108), and is
even done in the case of a permanent polarization (electret). Applying the general
definition (2.108) to the special case of linear media results again in (2.105).
Taking the divergence of (2.108) gives

 ,

i.e., with (2.66)
(2.109)

and
(2.110)

To avoid confusion here requires one to make a clear and conscious distinction
between free and bound charges. This means to either calculate the electric field by
considering all charges (free and bound), or to calculate the electric displacement
from the free charges alone. 

Note that one is still dealing with electrostatics (i.e. the time independent
case) only. Nevertheless it shall be noted, that after applying an electric field, it
takes some finite amount of time before the system reaches its final state. If one
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applies alternating electric fields of sufficiently high frequency, then the
equilibrium condition can not be reached anymore, and so  and  are actually
frequency dependent. So far, we have been dealing only with  and  in the limit
of zero frequency.

Moreover, many dielectrics are not isotropic, i.e. their polarization depends
on the direction of the applied electric field and shows a preference for certain
directions. In this case, however,  is no longer a scalar, but a tensor. Eq. (2.105) is
then replaced by the more complicated expression

(2.111)

or in tensor notation
 . (2.112)

 is a quantity with nine components whose individual components behave like
products of vector components (e.g., during a transformation). The scalar
multiplication of a tensor of rank two (that is ) with a vector results in a vector.
Note that  is a symmetric tensor, thus 

(2.113)

If in (2.100) we set , then . This suggests that in some respect,
conductors behave like dielectrics with infinite susceptibility. The plausible reason
is that a conductor has free charges which, when an electric field is applied, creates
arbitrarily large dipole moments.

2.9 The Capacitor with a Dielectric

One is now able to understand why a dielectric increases the capacitance of a
capacitor. As shown in Fig. 2.46, there are charges  on the plates, and the space
between them is filled with a dielectric of permittivity . Then
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and therefore

 (2.114)

Comparison with eq. (2.95) reveals that C has increased by the factor . This
results quite plausibly from the fact, that for a given charge on the plate of the
capacitor, the bound charges on the surfaces of the dielectric reduce the total charge
and thereby also the electric field. 

As another example, let us analyze a plane capacitor with a layered medium
(Fig. 2.47). The voltage is

 .

On the other hand 

is the same everywhere. Therefore

 ,

or

 . (2.115)
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2.10 Boundary Conditions for E and D and Refraction of Force 
Lines

Here, we analyze the boundary that separates two regions. Perhaps it is the
boundary of two materials of different permittivities, or perhaps it carries a surface
charge etc. The conditions that have to be met at such boundaries result from
Maxwell’s equations. We start with Faraday’s law,  eq. (1.68)

 .

Integrating about the small area A shown in Fig. 2.48 gives

The reason is that the area becomes arbitrarily small when its perpendicular extent
approaches zero. This implies that there is no voltage along the infinitesimal path
element perpendicular to the boundary. This condition is not met for a dipole layer
which is shown in Fig. 2.49, in which case the relation becomes:

 .
The reason is that the dipole layer causes a discontinuity of the potential in the
direction of  by the factor  (2.77). Thus
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i.e.,

(2.116)

This is a special case. It describes the discontinuity of  along a given direction
on the dipole layer as shown in Fig. 2.49. ,  are the tangential components
of the electric field in this direction, where  is the component of  in this
direction whereby  is the two-dimensional gradient in the plane of the dipole
layer. We can lift this restriction on the direction by writing

 . (2.117)

Equation (2.116) results from this by scalar multiplication with the unit vector in
the chosen direction.

Without the dipole layer, one obtains as in the beginning of this section,
 . (2.118)

The tangential component of E has to be continuous, as long as there is no dipole
layer present.

A boundary condition for D follows from eq. (1.23) or its equivalent eq.
(1.20) namely eq. (2.74), already derived in Section 2.5.3, 

 . (2.119)

In agreement with our discussion of Section 2.8, this is generally true only, if 
merely represents the free, but not bound charges. The normal component of  is
continuous only if . Otherwise, it too is discontinuous.

The boundary conditions for  and  induce kinks (refraction) of the
electric lines of force when entering another medium, or when passing through a
dipole layer, or through a surface charge. With Fig. 2.50 it follows:
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and

 .

So

and

i.e.

(2.120)

Specific cases of this relation are
1. Refraction at a boundary where 

(2.121)

2. Refraction at a surface with free surface charges where ( )

(2.122)

Generally, if there is a dipole layer, the electric field is not only refracted, but also
rotated by the angle  with respect to the plane of incidence. Using eq. (2.117) and
the illustration shown in Fig. 2.51:
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 .

This results in 

and

.

2.11 A Point Charge inside a Dielectric

2.11.1 Uniform Dielectric

Consider a point charge at the center of a hollow sphere made up of a dielectric
material (Fig. 2.52).
For the entire space,

 .

For vacuum 

 ,

and inside the dielectric, hollow sphere
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 .

The associated polarization is

 .

and, as will be shown later (in 3.42)

 ,

which means that there are no bound volume charges inside the dielectric.
Nevertheless, there are bound surface charges, specifically

 

Fig. 2.53 illustrates the behavior of D and E as functions of r. Now we let 
approach zero, but  shall go to infinity. As a result, one finds the net charge
inside 

 .

This means that the charge appears to be reduced as a result of the bound charges
by the factor . The overall field, where now the dielectric fills the entire space, is 
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 , 

i.e., the field is reduced relative to vacuum by the same factor , as was the
charge.

2.11.2 Plane Boundaries between two Dielectrics

Let a point charge reside in a space that is filled with two different dielectrics that
are separated by a plane boundary (Fig. 2.54). Material 1 ( ) occupies the half-
space x > 0; material 2 ( ) occupies the half-space x < 0. One can show that 

1. The field in half-space 1 can be expressed as the superposition of the 
field of Q and the field of a fictitious charge (image charge) Q’ , located 
in half-space 2 at the same distance (a) from the boundary as Q.

2. The field in half-space 2 can be expressed as the field of the fictitious 
charge Q’’, located at the same point as Q.

Fig. 2.53
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This justifies the following Ansatz.

.

From this follow the electric fields

,

The tangential components of E, that is  and , as well as the normal
component of , that is , have to be continuous on the boundary x = 0.  and

, are continuous if

 ,

and  is continuous if 
 .

One may verify that the Ansatz is correct by showing that the appropriate choice of
Q’ and Q’’ fulfills the boundary conditions everywhere on the boundary x = 0, i.e.,
for all y and all z, which is not at all self-evident. Calculating Q’ and Q’’ from these
two equations gives

 ,

 .

Q’’ always has the same sign as Q has, while Q’ may have either one. In particular
for , we find Q’ = 0 and Q’’ = Q, as expected. In the limit of 
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approaching infinity, one finds Q’ = -Q, the same result as for the image charge at a
conducting plane. As already mentioned, a conductor behaves in many ways like a
dielectric with infinite permittivity. We will return to this topic in a later section.

The field configuration for 
is illustrated in Fig. 2.55 and for in Fig. 2.56. The curvature of the force
lines depends on the sign of . For  and  we have , i.e.  and

 attract each other, which results in field lines as shown in Fig. 2.55. For 
and , however, we have , i.e.,  and  repel each other, which
results in field lines as shown in Fig. 2.56.

2.12 A Dielectric Sphere in a Uniform Electric Field

2.12.1 The Field of a Uniformly Polarized Sphere

In order to solve the problem of a dielectric sphere, it is useful to consider the
electric field of a uniformly polarized sphere. When  is the radius of the sphere
and P its uniform polarization, then the overall dipole moment is

 . (2.123)

One may think of a uniformly polarized sphere as being created by two spheres,
charged with opposite charges that are slightly displaced against each other
(Fig. 2.57). When  is its volume charge and d the displacement, then

 .
Outside of the sphere, the field is that of a dipole at the origin, namely

 . (2.124)

This is still correct for the surface of the sphere, where 
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 . (2.125)

By means of theorems about the uniqueness of solutions of potentials, which we
will deal with in Chapter 3, it is possible to show that the potential inside the sphere
has to be

 . (2.126)

There is another way to prove this without using those theorems. The components
of E at the sphere’s outer surface are

 , (2.127)

which results from (2.63). The surface charge at the sphere’s surface (bound
charges due to polarization) is 

 . (2.128)

This means that  decreases by  when passing through the surface
from the outside towards the inside of the sphere, while the other components
remain unchanged. At the inside surface of the sphere, one therefore obtains

 (2.129)

Consequently the electric field E written in terms of its Cartesian components is
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 (2.130)

So, E has only a z-component which, furthermore, has the same value everywhere
(on the inside surface). The inside of the sphere is free of (bound) volume charges
and we therefore conclude that the whole inside space is filled with the same field.
The related potential is , as was already suggested. Also notice that in
connection with eq. (2.128), a conducting sphere within a uniform electric field
carries a surface charge proportional to (see .eq. (2.94)). Obviously, the field
of the surface charge identically cancels the external field, i.e., it creates a uniform
field inside the sphere. Outside, it creates a dipole field, as we have also seen when
analyzing the conducting sphere. We obtain the same results when we apply these
results to the current case.

Summarizing, we may state that a uniformly polarized sphere (polariza-
tion P) creates an electric dipole field outside and a uniform electric field 
inside .

This provides the field of a permanently, uniform polarized sphere (i.e., that of a
uniform electret). The field in its interior is

 .
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Here (Fig. 2.58), D and E point in different directions: they are anti-parallel, not
parallel as usual. Furthermore, a remarkable fact is that (as always in electrostatics)
E is irrotational but not source free, while D is source free but not irrotational.

Besides spherical bodies, only ellipsoids have such simple characteristics.
The general relation between P and E or D and E, respectively, is rather
complicated. In particular, D and E may point in entirely different directions.
Fig. 2.59 illustrates the fields of a uniformly polarized cuboid. On the inside of it,
the fields of D and E have very different shapes. Of course, on the outside, there is
the usual relation between E and D: .

So far in this section, we have not asked what causes polarization. It could be
due to permanent polarization as illustrated in Fig. 2.58 and Fig. 2.59. It could also
be due to an external, uniform field, which then would need to be considered as
well.

Fig. 2.58
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2.12.2 An Externally Applied Uniform Field as the Cause of Polariza-
tion

When a sphere is exposed to a uniform field, an additional field is created as the
sphere is polarized. This field needs to be superimposed onto the original field. As
we have just seen for uniform polarization, the internal field is uniform as well.
Uniform polarization would thus cause an overall uniform field inside, which on
the other hand causes uniform polarization. We may therefore state that a uniform
electric field uniformly polarizes a dielectric sphere. Using the relations from
Fig. 2.60, one is now able to write

 .

from which one finds

 . (2.131)

Furthermore,

(2.132)

and

 . (2.133)

2.12.3 Dielectric Sphere (εi) and Dielectric Space (εa)

Let us generalize the previous problem some more. The space outside the sphere
shall now be a dielectric as well. Now, the field outside consists of a, so far,
unknown dipole field and the uniform field , i.e., we may write 
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 (2.134)

C is a constant that is initially undetermined. It depends on the polarization of
both, the outside space as well as the inside of the sphere. Inside, we have the yet
undetermined uniform field , i.e.,

 (2.135)

One can show that with the proper choice of C and , all boundary
conditions at the sphere’s surface ( ) can be fulfilled. Only this is the
justification for the Ansatz in (2.134) and (2.135).  has to be continuous for

, i.e.,

 .

Furthermore, also for ,  has to be continuous, i.e.,

 .

Solving those equations gives

 (2.136)

and

 (2.137)

(2.136) generalizes (2.131) and both coincide for . 
The polarization inside is

(2.138)

and uniform in z-direction. The polarization in the outside space is not uniform, but
it is nevertheless divergenceless (source free), so that there are no bound charges in
the outside space:
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 .
The expression used here for the divergence in spherical coordinates will be

derived later. Bound charges exist solely at the surface of the sphere, namely
 

 

 

 .

Outside of the sphere, this charge brings about a dipole field which corresponds to
the dipole moment

 

 .

Note eqs. (2.67) and (2.123). The constant C of the previous Ansatz is just the
dipole moment, caused by the polarization of the inside and outside space, which
justifies the Ansatz (2.134) and also illustrates the formal result of (2.137).

Together, the dipole field and, the uniform field bring about the potential in
the outside space

 . (2.139)

To compare this potential with that of a conducting sphere in a uniform electric
field as described by eq. (2.91) is an interesting exercise. It can be derived from the
just obtained potential by the limit  approaching zero. In some way, a
conductor behaves like a dielectric in the limit of infinite permittivity. The law of
refraction (2.121) illustrates this fact. Lines of force have to be perpendicular to the
conductor surface. According to the law of refraction, this is also the case for a
dielectric of infinite permittivity.

 in (2.136) also determines ,

 . (2.140)
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This result allows one to sketch the fields in Fig. 2.62 (for ) and Fig. 2.61
(for ). In all figures, D has no divergence. E, in contrast, because of the
bound surface charges is not free of a divergence. For the case of Fig. 2.61, i.e. for
( ), it is  and . In contrast, for the case of Fig. 2.62, i.e.
for ( ), it is  and .

2.12.4 Generalization: Ellipsoids

From our considerations of the plane disk discussions in Section 2.8, with uniform
polarization perpendicular to its surface, one finds that

 . (2.141)

The result for a sphere was

Fig. 2.61
E D

εa 3εi=

εa εi>

Fig. 2.62
E D

3εa εi=

εa εi<

εa εi> Ei Ea ∞,> Di Da ∞,<
εa εi< Ei Ea ∞,< Di Da ∞,>

Ei Ea
1
ε0
-----P–=
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 . (2.142)

We may add the trivial case of a plane disk that is polarized parallel to its surface
(Fig. 2.63), where the boundary condition causes

 . (2.143)

The factor in front of P in all those equations is called the de-electrification factor.
In above three cases, this factor is , , and 0, respectively.

We have already stressed the fact, that an arbitrarily shaped body of uniform
polarization does by no means have a uniform field inside. This is only the case for
ellipsoids and their limits (plane plates, cylinders, spheres). The proof shall not be
provided here. The equation for an ellipsoid is

An elliptical cylinder results from the limit of 

 .

For this case, if also  , a circular cylinder results
 .

For an ellipsoid with  we get a sphere
 .

Two parallel plates emerge when two half-axes, for example, a and b approach
infinity:

 ,
i.e.,

 .

Ei Ea ∞,
1

3ε0
--------P–=

Fig. 2.63

EaEa

Ea

Ei Ea 0 P⋅– Ea= =

1 ε0⁄ 1 3ε0⁄

x2

a2
----- y2

b2
----- z2

c2
----+ + 1=

c ∞→

x2

a2
----- y2

b2
-----+ 1=

a b=
x2 y2+ a2=

a b c= =
x2 y2 z2+ + a2=

z2 c2=

z c±=
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We shall not calculate ellipsoids in any depth here, but merely provide the results,
which may be obtained by means of the Ansatz, originated by Dirichlet, that a
uniform polarization 

 (2.144)

creates a uniform internal field
 . (2.145)

Therefore, the vectors P and E point generally in different directions. (2.145) could
also be written in the following form

 . (2.146)

The three constants A, B, C are the de-electrification factors for the ellipsoid. A, B,
C are different from each other for an ellipsoid with three distinct axes and
determined by certain integrals, for example,

 .

Of course, the expressions for B and C are analogous. Remarkable is that in any
case. 

 (2.147)

For symmetry reasons, the relation for a sphere has to be ,
confirming our previous result. For a circular cylinder whose axis is oriented
parallel to the z-axis, we have  and . This result can easily
be derived by the method previously used for a sphere. It is an easy exercise to
convince oneself that the field outside the cylinder is that of a line dipole at the axis
of the cylinder. For a plane plate whose normal component is parallel to the z-axis,
the constants are  and , which again, is consistent with our
previous result.

Later, in conjunction with problems of magnetism, we will meet similar
factors, which are termed de-magnetizing factors.

2.13 Polarization Current

The chapter discussing electrostatic problems is not the most appropriate place to
cover polarization currents. Nevertheless, we have introduced polarization and
want to also introduce the polarization current, which results from time dependent
polarization. We start from

 .

P Px Py Pz, ,〈 〉=

E AP– x BP– y CP– z, ,〈 〉=

E
A 0 0
0 B 0
0 0 C 

 
 
 
 

– P=

A abc
2ε0
--------- ξd

a2 ξ2+( )3 2/ b2 ξ2+( )1 2/ c2 ξ2+( )1 2/
------------------------------------------------------------------------------------------

0

∞

∫=

  A B C+ + 1
ε0
----  =

A B C 1 3ε0⁄= = =

C 0= A B 1 2ε0⁄= =

A B 0= = C 1 ε0⁄=

P∇• ρb–=
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If P is time dependent, then  has to be time dependent as well. The charge
conservation principle applies also to bound charges. If we call the related current
density , then according to the continuity equation (1.58), we obtain

. (2.148)

or

 , (2.149)

i.e.,

 , (2.150)

if we also assume that any, by (2.149) still possible divergence-free, additional
term vanishes. This current density of the bound charges is called the polarization
current density.
The overall charge density is 

 , 

and the total current density is

 .

To prevent misconceptions, let us discuss how this applies, for instance, to
Maxwell’s first equation (1.61).

 .

There are two possible approaches. Either we explicitly consider all charges and
treat the given space as if it were vacuum, or we only consider the free charges and
consider the space to be a dielectric. The first case gives

 

and
 ,

i.e.,

 .

In the second case, the current density is
 

and
 ,

ρb

gb

gb∇•
t∂

∂ρb+ 0=

gb∇•
t∂

∂ P 
 ∇•– 0=

  gb t∂
∂ P  =

ρ ρb ρf+=

g gb gf+
t∂

∂ P gf+= =

H∇× g
t∂

∂D+=

g gf gb+ gf t∂
∂ P+= =

D ε0E=

H∇× gf t∂
∂ P

t∂
∂ ε0E+ +=

g gf=

D ε0E P+=
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i.e.,

 .

Both viewpoints lead to the same result, although care is needed in order not to
confuse those two approaches.

2.14 Energy Principle

2.14.1 Energy Principle in its General Form

The energy principle of electrostatics is just a special case of the general energy
principle of electrodynamics which we will cover here, although it is not strictly
part of electrostatics. Starting point are the following two Maxwell’s equations.

 . (2.151)

 . (2.152)

We define the so-called Poynting vector. 
 , (2.153)

whose significance we will recognize in the following. We take its divergence,
 , (2.154)

then using Maxwell’s equations:

 . (2.155)

The significance of this equation is illustrated by integrating over a volume V:

(2.156)

Although this equation will loose its generality, we will perform some more
algebra, using the relations:

 (2.157)

So far, we have used the equation  for vacuum only for which .
However, we will use its generalization, which will be discussed later. Then
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∂ P

t∂
∂ ε0E+ +=
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t∂
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∫ S dA•

A
∫° H

t∂
∂ B• E

t∂
∂ D•+ 

  τd
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∫– E g•( ) τd

V
∫–= =

D εE=
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 , (2.158)

and finally, using (2.156) gives

(2.159)

or using (2.155)

 . (2.160)

Those two, equivalent relations represent the energy principle in integral and
differential from, respectively. To interpret it, we apply the following reasoning.

Imagine some system that contains the energy W in whatever form. This
energy is distributed somehow within the space of that system, where it has the
spatial density (energy density)

The energy may be distributed differently at different times, i.e., it may flow from
one point to another point. The energy per unit time and unit area that flows
through an area element is called energy flux density. It is a vector and shall be
named v. Energy W is not necessarily a conserved quantity, since one type of
energy may be transformed into another type. Of course this same fraction of
energy has to exist in that other form of energy. The transformed energy per unit
time and unit volume shall be called u. The energy balance is then:

(2.161)

i.e., the energy that is lost from the overall volume consists of two parts. One flows
away through the surface ( ) and one is transformed into another form of
energy ( ). This equation is comparable to eq. (2.159). When written in
differential form it may be compared to (2.160). Applying Gauss’ theorem we get

and thus

. (2.162)

Comparison allows identification of the different terms:
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1. S is the energy flux (density) of the electromagnetic field

2.  is the electromagnetic energy density, which consists of 

an electric ( ) and a magnetic ( ) part.

3.  is the fraction of electromagnetic energy that is lost per unit time 
and unit volume, and is nothing else than the heat loss of electromag-
netic energy converted to heat energy due to the current (resistance), as 
we shall show.

We will now analyze a cylindrical conductor with constant conductivity . It shall
have the length l, cross section A, and shall carry the current of constant density g.
Then the transformed power in its volume is

(2.163)

because the total current is
 ,

and the voltage is
 .

Furthermore, we have used

 . (2.164)

R is the resistance of the conductor measured in Ohm (Ω) (see Section 1.13). Here,
 is the power transformed into heat due to the current. This confirms our

hypothesis. Ohm’s law is obtained in its usual form
 . (2.165)

This represents the integral form, of what has previously been introduced as Ohm’s
law 

or

Multiplication by  gives .
An important point to highlight is that eqs. (2.155) and (2.156) are much more

general than eqs. (2.159) and (2.160), which we obtained using the more restrictive
relations of eq.(2.157). The former also apply to nonlinear media as well as to
moving charges (current densities) of any kind, which are possibly not caused by a
conducting medium.
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2.14.2 Electrostatic Energy

We focus now on electrostatic energy. Its spatial density has been determined in a
rather formal way to be

.

It must be possible to also obtain this expression from purely electrostatic
considerations.

By eq. (2.18), a point charge Q1 at location  is the source of the potential

If we move a second charge Q2 from infinity to point , the thereby stored energy
is

 , (2.166)

using
 .

The potential created by both charges is

.

A third charge moved from infinity to point  adds to the stored energy 

 ,

The total energy is now

 .

If we add more charges the relation becomes

 .

Using the following abbreviation in eq. (2.166)
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 , (2.167)

the energy can be written as

 . (2.168)

The sum extends over all indices i and k, where however, i and k have to be
different. For , the magnitude would be infinite because of .
Basically, every point charge stores an infinite amount of energy in its field
(sometimes called self-energy), which we omit. This merely represents a certain
normalization of the energy. The only contributions we need to consider are those
that stem from interaction of the different point charges. The factor  is
necessary because of duplicate counting of contributions, as the sum in eq. (2.168)
contains besides  also , while only one, either  or  may be
counted.

If instead the charge is continuously distributed over the space, the sum turns
into an integral.

 , (2.169)

or with 

 . (2.170)

The potential according to eq. (2.20) is

.

This allows to rewrite (2.170):

 . (2.171)

Because of the vector identity

the energy can also be expressed as 

 .
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If we now consider the entire space whose surface has moved to infinity where
, then 

 . (2.172)

i.e., we obtain just the volume integral over the electrostatic energy density.
Of course, we may add surface charges. Then eq. (2.171) is replaced by

 . (2.173)

or, if there are only surface charges

 .

For a plane capacitor (Fig. 2.64), for instance, the work becomes

 .

 .

Because of  (2.95), one can express the energy that is stored in the field of
the capacitor in several ways.

 . (2.174)

On the other hand, the energy is of course

 .

As necessary, the result is the same.
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2.15 Forces in the Electric Field

2.15.1 Force on the Plate of a Capacitor

Consider, a capacitor with the charge Q, insulated from its surroundings (for
example, the charge Q remains unchanged). A charge Q within the field E,
experiences the force 

 .
Here, E is the field that exists without the charge Q. The electric field inside the
capacitor is

 .

It would be wrong to assume that the force that one plate exerts on the other could
be calculated using this field. This field is created by the charges on both plates. We
may conclude from our discussion of Fig. 2.25, that the field of one charged plate
at the location of the other is exactly half that field, namely . The magnitude
of the force is therefore

 . (2.175)

This force is attracting since the charges on the two plates have opposite signs.
To solve this problem in a different way is also possible. We take a capacitor

with variable plate distance x. Its energy as a function of x is

 .

It requires a force to increase the distance between the plates. i.e., it requires
mechanical energy to increase the plate’s separation. Neglecting friction, this work
must be found again in the electric field energy of the capacitor. For a virtual
displacement  we obtain with the notation of Fig. 2.65

 .
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i.e.,

 . (2.176)

Besides the sign, which expresses the direction of the force, this confirms above
expression. Both methods are thus equivalent. The second method is often more
convenient. Written in a slightly different form:

 .

or per unit area the force is 

 . (2.177)

2.15.2 Capacitor with two Dielectrics

Consider the capacitor shown in Fig. 2.66, which is filled with two different
dielectrics. The question is whether or not those dielectrics exert some force on
each other. To solve this problem is easy when using the method of virtual
displacement. As before, the charge Q shall be kept constant, i.e., the capacitor is
insulated.
Then the energy of the capacitor is 

 .

Using 
 

and
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and

 .

This results in 

 

 

 ,

i.e., there is a force in positive x-direction when  and in negative x-direction
when . Per unit area the force is

 (2.178)

where of course .
Both results, (2.177) and (2.178) indicate mechanical stress or pressure in the

form . Thus we can say, that electric fields cause mechanical stress
 in the direction parallel to their field and pressure 

perpendicular to them.
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3 Formal Methods of Electrostatics

Having introduced the basic terminology in Chapter 2, we now discuss the formal
methods by which electrostatic problems can be solved. Some problems were
solved already in Chapter 2, but those problems were of such nature that they could
be simplified by invoking symmetry or by plausibility arguments. This does not
always work, and then we have to rely on formal methods having a general
applicability. Even then, numerous problems can not always be solved analytically
and one needs to use numerical methods (see Chapter 8). Here we will restrict
ourselves to analytical methods and focus on the two of the more important ones:

1. the method of separation of variables
2. method of complex analysis for the case of plane fields

We will cover these here first in the context of electrostatics, even though they are
of much more general nature and form the basis for the subsequent parts on current
density fields, magnetostatics, and time dependent problems.

The first step in applying the separation method is to choose a convenient
coordinate system, which allows a simple formulation of the boundary conditions.
This calls for a coordinate transformation. With a few exceptions, we have thus far
only used Cartesian coordinates. Also, the vector operators (grad ( ), div ( ),
curl ( ), Laplacian (  or )) have only been expressed in their Cartesian
coordinates.  Therefore, those will be discussed first in the subsequent sections,
before returning to the electrostatic problems.

3.1 Coordinate Transformations

One defines a set of new coordinates based on Cartesian coordinates (x,y,z): 

(3.1)

or if we solve for (x,y,z):

(3.2)

The equation of a surface is obtained when holding one value fixed, for example
:

 . (3.3)

∇ ∇  •
∇  × ∆ ∇2

u1 u1 x y z, ,( )=

u2 u2 x y z, ,( )=

u3 u3 x y z, ,( )= 





x x u1 u2 u3, ,( )=

y y u1 u2 u3, ,( )=

z z u1 u2 u3, ,( )= 





u1
u1 x y z, ,( ) c1=
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Simultaneously fixing a second coordinate, for example,  defines another
surface. The intersection of both surfaces is defined by simultaneously meeting the
equations

 . (3.4)

Here, the only remaining variable is . Its parameterized representation is

(3.5)

A point is obtained if we also fix  ( ).

(3.6)

One may view this point as the origin of a local, in general non Cartesian
coordinate system (Fig. 3.1). Let us calculate the distance between this point

 and the point . Using Cartesian
coordinates we have

 . (3.7)

Where of course
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(3.8)

Substituting (3.8) into (3.7) and after ordering we obtain

(3.9)

We will not use this rather inconvenient expression in its full generality, but restrict
ourselves to orthogonal coordinate systems. These are characterized by the fact that
the three coordinate lines in Fig. 3.1 are mutually perpendicular at every point. We
define the tangential vectors . For instance, the vector tangent to the line

, which was given in eq. (3.5) is determined by:

 . (3.10)

Similarly for the remaining vectors:

 . (3.11)

Fig. 3.2 shows the coordinate system of Fig. 3.1 with its tangent vectors.
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A coordinate system is orthogonal if the following holds for every point:

 . (3.12)

The vector from  to  is 
 . (3.13)

Therefore the distance element (squared) is

 . (3.14)

This is a much shorter way to write eq. (3.9). For an orthogonal coordinate
system, because of eq. (3.12), the (square of the) distance element simplifies even
more

 . (3.15)

The only difference to the respective expression in Cartesian coordinates is the
occurrence of the scale factors  which are spatially dependent, i.e., they are
generally different at differing positions in space. The volume element in
curvilinear coordinates is characterized by . Its edges are

, and thus has the volume element
 . (3.16)

Fig. 3.2

t3

t1

t2

u2

u3

u1

t1 t2• 0=

t2 t3• 0=

t3 t1• 0= 





P P'
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2 t3
2d u3

2+ +=

             +  2 t1 t2• du1du2
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
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
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
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ds2 t1
2d u1

2 t2
2d u2

2 t3
2d u3

2+ +=

t1 t2 t3, ,

du1 du2 du3, ,
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  dτ t1t2t3du1du2du3  =
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The infinitesimal line element or displacement  has the components
 (i = 1, 2, 3) (3.17)

and an infinitesimal area element  has the components
 (i, k ,l all different) (3.18)

The factors  are the diagonal elements of the so-called metric tensor, which has
off diagonal elements if the coordinate systems are not orthogonal.

3.2 Vector Analysis for Curvilinear, Orthogonal Coordinate 
Systems

3.2.1 Gradient

Starting form the definition

and because of 

one obtains

 .

Similarly, for the other components 

 . (3.19)

3.2.2 Divergence

The starting point for the definition of the divergence is the limit of a surface
integral of the type given by eq. (1.22). Using nomenclature established in Fig. 3.3,
one finds the vector a with its components a1, a2, a3

ds
  d si ti d ui  =

dA
  d Ai tktl duk dul  =

ti
2

∇ϕ( )u1
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-------------------------------------------------------------------------------------
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-------------------------------------------------------------------------------------
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             1
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u1∂
∂ϕ=

  ∇ϕ 1
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u1∂
∂ϕ 1

t2
---

u2∂
∂ϕ 1

t3
---

u3∂
∂ϕ, ,〈 〉   =

a∇• 1
V
--- adA∫°V 0→

lim=
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, 

i.e.,

 . (3.20)

3.2.3 Laplace Operator

Since
 

one may derive the Laplacian from both, eq. (3.19) and (3.20). One obtains

Fig. 3.3
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 . (3.21)

3.2.4 Circulation

To calculate the curl, we start from eq. (1.34) and use the right hand rule to
establish the relation between the direction of the circulation (also called the
rotation) and the direction of the line integral of Section 1.7. Using the notation
from Fig. 3.4, one finds:

 

 

 . 

The other two components of are derived in the same way. The end result is

∇2ϕ 1
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 
 + +=
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 . (3.22)

Using the unit vectors  of a coordinate system,

 ,

 ,

 ,

we may also write curl a in its determinant form

 (3.23)

or

 . (3.24)

3.3 Some Important Coordinate Systems

Of the many interesting coordinate systems, this book will only employ three:
Cartesian, cylindrical, and spherical coordinates. We will summarize the results of
our previous discussion for these coordinate systems.
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=
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3.3.1 Cartesian Coordinates

For Cartesian coordinates, the scale factors are, of course,  and
from eq. (3.19) through eq. (3.24), we obtain the familiar expressions

 .

 .

 .

 .

3.3.2 Cylindrical Coordinates

The case of cylindrical coordinates is illustrated in Fig. 3.5. The coordinates are

 , (3.25)

t1 t2 t3 1= = =

∇ϕ
x∂
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or expressed in Cartesian coordinates

 . (3.26)

With this, eq. (3.10), and (3.11) it follows for the tangent vectors in Cartesian
coordinates:

 , (3.27)

i.e.,

 , (3.28)

and consequently for the volume element and the (squared) distance element
 , (3.29)

 , (3.30)

and furthermore

 . (3.31)

 . (3.32)

 . (3.33)

(3.34)

Be careful not to confuse the angle  with the potential , which was up to now
also labeled with . We will identify the potential with some other symbol
wherever confusion with the angle is anticipated.
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
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
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3.3.3 Spherical Coordinates

Fig. 3.6 illustrates the spherical coordinate system.
The spherical coordinates are,

 , (3.35)

or expressed in terms of the Cartesian coordinates

 . (3.36)

For the tangent vectors

 , (3.37)

and

 , (3.38)

and consequently for the volume element and (squared) distance element
 , (3.39)

 , (3.40)

Fig. 3.6
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and 

 , (3.41)

 , (3.42)

 , (3.43)

(3.44)

3.4 Some Properties of Poisson’s and Laplace’s Equations 
(Potential Theory)

Poisson’s and Laplace’s equation (2.11) and (2.12), respectively are the basis for
the formal treatment of electrostatics.

3.4.1 Problem Description

A large class of electrostatic problems are described in the following way:
Consider an arbitrarily shaped region, with an arbitrary distribution of volume
charges  inside. Given is the potential  on its boundary or the perpendicular
component of the electric field on the boundary, i.e., . This
represents Neumann’s boundary value problem when  is prescribed. On the
other hand, when  is prescribed, it is called Dirichlet’s boundary value problem.
Of course, it is possible to prescribe  on part of the boundary and  on the
other part, in which case one is dealing with a mixed boundary value problem. 

The region in question may be bounded by any number of arbitrarily shaped
surface areas.

One can uniquely solve these kind of boundary value problems using the
methods of potential theory . Its proof involves Green’s integral theorems.

3.4.2 Green’s Theorems

The starting point is Gauss’ integral theorem
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 .

Define a vector a as 
 ,

where  and  are arbitrary scalar functions. When substituting, one obtains

(3.45)

This is Green’s first identity. It is permissible to exchange  and , as they
are arbitrary anyway. This gives

(3.46)

Now we use:
and ,

as well as 

 

and similarly 

 .

Using these relations and subtracting (3.46) from (3.45) yields Green’s second
identity, also known as Green’s theorem.

 (3.47)

On the other hand, if we let  in one of the two equations (3.46) or (3.45),
then we obtain one of Green’s integral theorems:

 . (3.48)

If the functions  and  depend on two variables only, then (3.47) and (3.48)
reduce even more:

 

and

 .
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For the one dimensional case this gives

 ,

and

 .

These are simple integrations by parts. Green’s integral theorems are thus simply
generalizations of integrations by parts to two or three dimensions, respectively.

3.4.3 Proof of Uniqueness

Suppose (for our Neumann, Dirichlet, or mixed problem) there are two solutions
 and . This means that

 ,

 

and the boundary conditions shall also be satisfied.
We define a new function as the difference

 

then
 ,

which means that it has to satisfy Laplace’s equation. Furthermore, the potential
along the boundary is

 
or

 

or – in case of mixed problems – one of the equations along part of the boundary
and the other equation along the remainder of the boundary. We apply Green’s
theorem in its form (3.48) to  and obtain

 . 

Since  is always positive, this can only be true if the integrand is identically
zero
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 . 
The case of a Dirichlet, or even the mixed boundary value problem requires

that  everywhere. For Neumann’s problem,  is determined, except for a
physically insignificant constant.

The problem may also be posed in a different way. Given is the charge of a
conductor in an electric field. Then

 

(The negative sign in  is due to the fact that the normal component
points outwardly, relative to the region that contains the field, which means it
points into the conductor). Therefore

 . 

Thus, it is not  that is prescribed along the boundary but the integral
. Furthermore,  is constant on the surface, although its value is yet

unknown. If we now have two solutions  and , then, as before, Laplace’s
equation applies to both, and to their difference. Integrating both solutions over the
boundary gives

 . 

Therefore

 

 . 

 ,

as before. Again we find
 

and
 . 

These uniqueness proofs have a common theme, and are formally based on eq.
(3.48), which concludes that if the boundary conditions require  on the
surface, together with , that then  has to vanish everywhere. There is a
plausible way to understand this. One can prove that in an area where ,

 may neither have a maximum nor a minimum. If there were a maximum (or a
minimum) of  at any point inside the region, then in a neighborhood of this point,
all lines of  had to point towards (or away from) it. Any surface in the vicinity
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of the maximum (or minimum) would be penetrated by a non-vanishing electrical
flux. This is only possible if there are volume charges present, which would require

. Therefore, the assumption of a maximum or minimum inside of this area
would lead to a contradiction. Then, if  on the boundary, it can not be larger
inside, but it can also not be smaller than zero inside and consequently 
everywhere in the region. In other words: If in a region , then the
function  may have its maximum or minimum values only on the boundary of that
region. Uniqueness of the solution of Dirichlet’s boundary value problem is an
immediate consequence of this statement.

3.4.4 Models

The equation  has a frequent occurrence in physical science and it
describes a vast number of problems. This enables one to frequently map physical
problems onto a corresponding electrostatic problem. For example, the two-
dimensional Laplace’s equation

 

also describes the displacement of a membrane suspended on a frame which is
considered to be small. The boundary (frame) defines  and inside .
Such a membrane can be considered a model for electrostatic problems.

3.4.5 Dirac’s Delta Function (δ-Function)

The -function is particularly useful in the following, which is why we will
introduce it here. It shall be noted that our exposition here does not substitute a
rigorous mathematical introduction.

A rough, illustrative way to describe the character of the -function is to note
that it vanishes everywhere except for one particular point of its argument (namely
0), where it takes an infinite value, exactly such that its integral equals 1.

(3.49)

(3.50)

The -function is not a function in the usual sense. It belongs to a more general
category of functions, which sometimes are called improper functions, generalized
functions, or distributions. Another possibility is to imagine the -function as the
limit of a series of functions. It can be constructed in various ways, for example,

1. The limit of a series of rectangular functions as illustrated in Fig. 3.7. 
Thus
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∫ 1=

δ
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and

2. The limit of a series of Gaussian functions as illustrated in Fig. 3.8. Now

where 

 

and

Fig. 3.7

xx = x’

1/h
h

gh x( )

gh x( )
h for  x x'– 1

2h
------≤

0 else





=

δ x x'–( ) gh x( )
h ∞→
lim=

Fig. 3.8
xx = x’

fa x( )

fa x( ) 1
a π
---------- x x'–( )2

a2
-------------------–exp=

fa x( ) xd
∞–

+∞
∫ 1=
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.

The -function is an idealization and useful mathematical tool. Nature does
not have -functions. It helps provide use with a formal analogue to the point
charge, which is also an idealization. A point charge may formally be described by
a charge density , which vanishes everywhere but at one particular location,
where it becomes infinitely large. We will generalize the one-dimensional

-function for this purpose.
 . (3.51)

This allows to describe a point charge Q at the location r’ by
 .

Integrating over the entire space gives

as we had expected.
An important property of the -function that follows from above discussion

is:

(3.52)

Thus, the -function has the defining property of filtering a particular value from a
smooth function when integrated.
One may write as well

Similarly for a function , defined in the entire space
 , (3.53)

which results from multiple applications of (3.52).
The -function is symmetric

 , (3.54)

It is possible to differentiate it as well as integrate it. Its indefinite integral is
Heaviside’s step function.

(3.55)

Indeed,

δ x x'–( ) fa x( )
a 0→
lim=

δ
δ

ρ

δ
 δ r r'–( ) δ x x'–( )δ y y'–( )δ z z'–( )=

ρ r( ) Qδ r r'–( )=

ρ r( ) τd
V
∫ Qδ x x'–( )δ y y'–( )δ z z'–( ) xd yd zd∫=

               Q δ x x'–( ) xd δ y y'–( )∫ yd δ z z'–( )∫ zd∫=

               Q 1 1 1⋅ ⋅ ⋅ Q ,= =

δ

 f x( )δ x x'–( ) xd
∞–

+∞
∫ f x'( )=

δ

f x( )δ x x'–( ) xd
∞–

+∞
∫ f x'( )δ x x'–( ) xd

∞–

+∞
∫=

               f x'( ) δ x x'–( ) xd
∞–

+∞
∫ f x'( ) 1 .⋅= =

 f r( )

f r( )δ r r'–( ) xd
entire
space

∫ f r'( )=

δ
δ x x'–( ) δ x x'–[ ]–( ) δ x' x–( )= =

 H x x'–( )
0 for x x'<
1 for x x'>




=
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 ,

or

 .

conversely

 ,

i.e., differentiating the step function (which is not possible with ordinary functions)
results in the -function.

To avoid confusion about the dimensions, we note that by eq. (3.50), the
-function carries a dimension, namely the inverse of its argument, i.e., . When

the argument of the δ-function is a vector, then based on the definition of (3.51) its
dimensions are for example,  for the three-dimensional case.

3.4.6 Point Charge and δ-Function

Poisson’s equation applies to the case of a point charge.

 ,

where
 ,

i.e.,

 ,

We know its solution already

 ,

i.e., we may now write for all locations, including the location of the point charge,
(which was previously impossible) 

 ,

or

 . (3.56)

In Section 2.3, we had to exclude the locations of the point charges, because we
were unable to differentiate there. With the use of the -function, those difficulties
or restrictions are now removed.

δ x'' x'–( ) x''d
∞–

x
∫
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1 for  x x'>




=

δ x'' x'–( ) x''d
∞–

x
∫ H x x'–( )=

dH x x'–( )
dx

------------------------ δ x x'–( )=

δ

δ x 1–

x 3–

∇2ϕ ρ
ε0
-----–=

ρ r( ) Qδ r r'–( )=

∇2ϕ Qδ r r'–( )
ε0

-------------------------–=

ϕ Q
4πε0
----------- 1

r r'–
--------------⋅–=

∇2 Q
4πε0
----------- 1

r r'–
--------------⋅ Q

ε0
----- δ r r'–( )⋅–=

∇2 1
r r'–
--------------- 4πδ r r'–( )–=

δ
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The potential for an arbitrary charge distribution  we previously found
by superposition to be

 .

It is worthwhile to also formally prove this result. Applying the Laplace operator to
this equation gives

 

this shows that the expression for  fulfills Poisson’s equation, proving its validity.
For completeness, we note that there exists a more general (nevertheless, not

the most general) solution for

 ,

which is given by

 .

Only the boundary condition  at infinity makes the solution unique and
forces the constant to vanish.

3.4.7 Potential in a Bounded Region

When considering the entire space with all its charges, then  is given by the usual
integral

 .

In contrast, if we just consider a finite space and only those charges inside this
region, then Green’s theorem (3.47) allows certain statements about this situation.
For this purpose we use (3.47) and substitute

 where  

and 
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2 1
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ϕ
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ϕ 0=

ϕ
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This gives

This result assumes that the point r’ is inside the respective volume. If that point is
at its surface, then the factor  needs to be replaced (in case of a “smooth
surface” as in Section 8.2.1) by the factor , and if that point is outside the
volume, then the factor becomes 0. Exchanging r and r’ gives

(3.57)

This result is peculiar and is sometimes called Kirchhoff theorem or Green’s
formula. It states that , besides its usual term 

 ,

which results from charges inside a volume, gets additional contributions from the
boundary. Evidently, these represent charges that may possibly be located outside
the volume. These formally derived contributions also have a plausible
explanation.

1. The term

can be regarded as the potential of a distribution of surface charges (see 
(2.26)).

with

.

2. The term
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can be regarded as the potential of a dipole layer (see (2.69)),

with
 .

Thus, by choosing the proper combination of dipole layer and surface charges, one
can simulate the effects that all possible charges outside the volume have on the
inside. This result then does not describe the field outside the region of
consideration. On the contrary, the dipole layer causes the boundary to have a
potential , while the surface charge causes the boundary to exhibit

. When we label the quantities at the inside with the index i and
those at the outside with the index a, then

 ,

and because of

 

follows the claim that

 .

Furthermore, it is

 .

Because of 
 

follows our claim that
 .

The surface charge and the dipole layer cause discontinuities of  and
, respectively, which is of paramount importance in field theory. This point will

be discussed in more detail (Section 8.2.1 and 8.2.2).
The quantities mentioned are closely related to the method of image charges

which we have already discussed (Section 2.6.1). Our previous discussion used the
reverse arguments, where the effects of surface charges were replaced by
appropriate image charges.

In closing,  we add a note of caution with regards to a potential
misinterpretation of eq. (3.57). It does by no means allow, when  inside the

1
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region was already given, to arbitrarily choose  and  on the surface, and
from there calculate  inside by (3.57). If we were to independently prescribe 
and  on the surface, then the problem would be overdetermined. To specify
one of the two quantities, already makes the problem unique This means that
eq. (3.57) merely expresses that  is of this general form if the values for  and

 are compatible. Nevertheless, it is possible to use this relation as starting
point for a solution, if by means of suitable Green functions, either one or the other
of these two terms is eliminated. We will omit the details of this discussion, but
will return to apply Green functions for concrete situations. Eq. (3.57) represents
an important basis for analytical and numerical methods to solve boundary value
problems, in particular the boundary element method (Sections 8.2 and 8.8).

Eq. (3.57) is also related to the Helmholtz theorem. We will come back to this
in Appendix A.5, where the significance of these two surface integrals will become
even more apparent.

3.5 Separation of Laplace’s Equation in Cartesian 
Coordinates

3.5.1 Separation of Variables

In the following few sections, we will solve Laplace’s equation by separation of
variables for a number of different coordinate systems. We demonstrate the
methodology by applying it to the simplest example, that is, to the Cartesian
coordinate system. The equation to solve is

  . (3.58)

Writing  as 
 (3.59)

and inserting this in (3.58), gives

 .

Divide this equation by  to obtain

 (3.60)

It is important to observe that the first term depends only on x, the second only on
y, and the third only on z. The sum vanishes. This is possible only, if each of the
three terms is constant. This enables one to write:
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 (3.61)

This introduces two arbitrary constants, the so-called constants of separation.
Slightly rewriting this yields

 (3.62)

These are ordinary differential equations. Their general solutions are:

 (3.63)

This gives

 (3.64)

The separation constants k and l may be chosen at will. The resulting solution for
 is thus only a very specific one. The general solution is, however, obtained by

the superposition of all possible solutions (i.e., using all possible values of k and l).
We can choose other functions, i.e., instead of cos and sin, we could have chosen
exp(ikx) and exp(-ikx), or exp(kx) and exp(-kx), respectively, which resulted in
writing X, Y, Z in a form different from above:

 . (3.65)

This does not actually introduce anything new, because of 
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
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 . (3.66)

Whether one finds  by superposing functions of type (3.63) or (3.65) is of lesser
importance. For a specific case, however, there may be reasons to select one over
the other. Depending on the type of problem, one needs to use functions with all
values of k and l, or just specific values of k and l. This will be clarified when some
specific examples are considered.

In very simple cases, one would find a quicker solution and not use the
method of separation of variables. Let us consider the problem of finding the
potential between two, infinite, parallel plates whose potentials are given constants
(Fig. 3.9).
One may proceed as follows: First, observe that  can only depend on x. Therefore

with the general solution

The integration constants A and B are determined by

i.e.,

and

  

or

ikx±( )exp kxcos i ksin x±=
kx±( )exp kzcosh ksinh z±= 




ϕ

Fig. 3.9
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which already solves this simple problem. Of course the formal route using
separation is open as well, i.e., using the Ansatz

 .
The reason why k has to approach zero is, that because of the independence of y
and z, both l, as well as k2+l2, have to vanish. This results in 

 ,
when substituting  and . Note that even for , B may be
finite, as  may assume any, even infinitely large values.

We will apply this method of separation of variables to other coordinate
systems as well. It shall be noted, however, that the method of separation of
variables is not generally applicable, but rather is a specific property of certain
orthogonal coordinate systems which allow for the separation of certain equations.
Besides Cartesian, cylindrical, and spherical coordinates, there are 8 more, for a
total of 11 coordinate systems which permit separation of the three-dimensional
Laplace equation and the Helmholtz equation, yet to be introduced. Besides these,
there are arbitrarily many coordinates systems that permit separation of the two-
dimensional or plane Laplace equation. Finally, there is the possibility to expand
the meaning of the term separability (now R separability, to distinguish it from
simple separability), which then allows for the separation of Laplace’s equation in
a few more coordinate systems. A very useful summary of all these problems is
provided by [2]. 

3.5.2 Examples

3.5.2.1 Dirichlet Boundary Value Problem without Charges Inside 

The problem is to find the electric potential inside a cuboid whose sides are of
lengths a, b, c (in x, y, z direction, as shown in Fig. 3.10). The boundary conditions
are

Ex x∂
∂ϕ–

ϕ2 ϕ1–
d

------------------–= =

ϕ Ã kxcos⋅ B̃ ksin x⋅+= k 0→

ϕ Ã B̃kx+ A Bx+= =
A Ã= B B̃k= k 0→

B̃

Fig. 3.10

z
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c b
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on all faces except on one (for example, the top one where 
),

 on this one face for .

There shall be no charges inside the volume. For the solution, according to
eq. (3.63), we make the Ansatz for the x-dependency

 

Since  for , it must be  and , which leads to

 (3.67)

Since also  for  

 .

Consequently
 (3.68)

and

 ,

where n is a whole number. This means that the boundary conditions force k to take
on very specific values:

 . (3.69)

Those values are often called eigenvalues of the problem. Putting everything
together, gives

 (3.70)

In similar manner, we find

  . (3.71)

To find the z-dependency, we start with the Ansatz

 for  so that  and therefore

  . (3.72)
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Substituting
 

we get

 , (3.73)

with n and m being positive integers. That poses no restriction on the generality of
this solution, because the sine function is anti-symmetric, the negative numbers are
redundant. The general solution is therefore

 . (3.74)

It meets all boundary conditions, except for . There, it has to be

 . (3.75)

The task is now to find the coefficients  to satisfy this boundary condition also.
This is a known problem, namely to expand  into a two-dimensional
Fourier series. This may require some introductory explanation. A Fourier series is
a means to expand a periodic function, over a given interval, as a linear
combination of sines and cosines. This function may, in specific cases, be
symmetric or anti-symmetric with respect to the center of the interval. There will
only be cosines in the symmetric case and only sines in the anti-symmetric case. In
our case, we may for example., choose for x the interval , although our
interest is only in the range . We may think of this function as periodic
and anti-symmetric in the said interval, which justifies the expansion by the above
method. The same is true for the y-dependency in the interval . 

To find the coefficients , we make use of the orthogonality relations 

 , (3.76)

where  is the so-called Kronecker symbol:
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and then integrate x from 0 to a and y from 0 to b to get

 .

Now we have found :

 . (3.77)

And finally the solution to our problem is

 (3.78)

This so derived function  satisfies Laplace’s equation and all the boundary
conditions. Because of the uniqueness theorem, it is the only solution. For 
the result has to be of course , which we may also write as

 (3.79)

On the other hand, since x and y are inside the integration boundary
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Comparison of the two equations for  reveals that within the interval
 and  the following holds

  (3.81)

This important relation is called the completeness or closure relation. The reason
for this name will be discussed. It is possible to derive this in a different way.
Consider the task to expand the δ-function into a Fourier series relation. We
attempt to expand

 

and determine  by means of the orthogonality relation (3.76) to obtain

 

or

and therefore as suggested

 .

If we consider this as a function of the entire x space, then the sum represents an
anti-symmetric function in the interval , which repeats itself
periodically, i.e., it represents positive δ-functions at all values where

 and negative δ-functions at all values where  and p is
a whole number but otherwise arbitrary. This means that as long as we do not
restrict ourselves to , the following is true:

 .

The more general Dirichlet problem, where the potential is prescribed on the
entire surface, can be reduced to the problem discussed above. Observe that it is
possible to choose another of the faces where to prescribe the potential (to be non-
zero), while it is zero on the other five faces. Overall, there are thus six such
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solutions and the general solution is obtained by linear superposition of those
solutions.

For the most part, the methodology with which the current problem was
solved can also be applied to Neumann or mixed type problems.

3.5.2.2 Dirichlet Boundary Value Problem with Charges Inside the Volume

The task is to find the electric potential inside a cuboid with the edges a, b, c where
on the total surface , while there are surface charges  on the plane

 located inside the cuboid ( ) (Fig. 3.11).
In this case, we need to write a separate Ansatz for each volume, 

and . We use the results from the previous example, i.e., use (3.74) to
write ϕ in the following way: In volume 1 where  we found

 , (3.82)

and in volume 2 where  the potential is

 . (3.83)

Those trial functions fulfill the required boundary condition  on the
entire surface. Furthermore, it has the property to make ϕ continuous at the area

. Therefore
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and

i.e., the tangential components of the electric field are continuous, as they have to
be. A further requirement is

 , (3.84)

from which one can find the coefficients . For this purpose we also need to
expand :

 , (3.85)

We use the orthogonality relation (3.76) to calculate

  

that is

 . (3.86)

The condition (3.84) can now be formulated as 

.
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  ,(3.87)

where the trigonometric identity  was
used to rewrite the hyperbolic functions.

Of particular interest is a special case of this result. Let us assume that there is
a point charge Q at location . This is equivalent to a surface charge

. (3.88)

Based on (3.86), this gives

 . (3.89)

Combining this with eqs. (3.82), (3.83), and (3.87) yields the somewhat
lengthy result:

  (3.90)

Although lengthy,  is basically a simple function and the solution to
Poisson’s equation

 , (3.91)

where the boundary condition  is prescribed on the whole surface of the
cuboid. This is referred to as its Green’s function:

 . (3.92)

Its significance lies in the fact, that it allows one to reduce every charge distribution
 in the cuboid to this equation, for which one has
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 . (3.93)

This is apparent from the superposition principle but may also be proven formally
by inserting it into Poisson’s equation.

Green’s function  has another, very interesting property. If in Green’s
theorem (3.47), we choose

and
 ,

then it follows from (3.47) that

and since G vanishes on the surface

 .

Therefore

 . (3.94)

Notice that  in eq. (3.94) is a solution of Laplace’s equation. This reveals that
Green’s function solves at the same time Dirichlet’s boundary value problem for
Laplace’s equation. If one prescribes arbitrary values for  on the surface then 
in the whole volume is determined by eq. (3.94). It is revealing to compare it with
the previously derived eq. (3.57). There, the first term vanishes because of

. However, the difference is that (3.57), besides the surface integral with
, also contains a term with , which is not the case in (3.94). This is the

reason, why (3.57) is not suitable to solve this kind of boundary value problem. Eq.
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(3.94) also allows one to solve the problem of Section 3.5.2.1 by means of Green’s
function, derived in the current section (3.5.2.2). In fact, one can prove that Green’s
function  as of (3.90) is a solution to the example of Section 3.5.2.1,
yielding the solution given in (3.78).

The results from these examples may be generalized to solve any problem of
this kind. The derivation of (3.94) is not specific to that particular example but is
valid for arbitrary surfaces, provided that G is suitable for that surface. 

Green’s function (or more precisely, Green’s function for Dirichlet’s prob-
lem) plays a peculiar double role. It yields the solution of Poisson’s equa-
tion when the potential vanishes everywhere on the surface, and also the 
solution of Laplace’s equation when the potential is prescribed every-
where on the surface. Eqs. (3.93) and (3.94) are the respective defining 
relations.

Correspondingly, there is a Green function for Neumann’s problem that plays a
similar role. We will prove this here by comparing the two cases side by side.
Consider a region with an arbitrary surface whose surface area we will call A.
There is a unit charge inside the region at point . The solution of the related
Poisson equation with the boundary condition that the potential vanishes
everywhere on the surface, or the normal derivative of the potential  is kept
constant on the surface, respectively. These are referred to as Green’s function of
the first kind or second kind, respectively or also Green’s function of Dirichlet’s
problem or Neumann’s problem. 

For the derivative of  in the normal direction to be constant (for the inside
Neumann problem), it has to exactly assume the given value. The reason is that

, which is achieved by the above choice
of the constant.
The solution of the general Poisson equation 

 Dirichlet problems Neumann problems

(3.95)

(3.96)

for r on the surface for r on the surface

 (3.97)
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with the respective boundary conditions is thus

The solution of the Laplace equation 

with the prescribed values at the surface

can also be obtained from Green’s functions, namely 

The values of  for the inner Neumann problem can not be to prescribed
arbitrarily. Since there are no volume charges, the electric flux through the surface
has to vanish, which provides for an additional constraint. While (3.101) was
already proven for Dirichlet’s problem, this is still to do for Neumann’s problem.
We achieve this by Green’s theorem eq. (3.47), using

and

where eq. (3.99) and eq. (3.100) define . Therefore

 ,

and with eq. (3.95) and (3.96)

 

 ,

which, after exchanging  and , yields eq. (3.101). The constant is determined
to be:
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3.5.2.3 Point Charge in Infinite Space

Consider the infinite plane  with a surface charge . We make the
simplifying assumption that  is symmetric with respect to the point
( ), that is

 . (3.102)

We choose the following Ansatz for the potential

 (3.103)

The two cosines are a consequence of the symmetry assumed for . Because
of its infinite extend, there are no special values for k or l. Since we have to accept
any value for k and l, the sum is replaced by the integral, or rather, because of the
two dimensions, a double integral (Fourier integral). The trial function for the z-
dependency is chosen such that  vanishes for , as required by physics.
Exponential functions thereby provide us with more convenient expansion
functions, as compared with hyperbolic functions. As in Section 3.5.2.2, we deal
with two regions, region 1 where  and region 2 where . Certain
boundary conditions have to be met for , where we require that 

 (3.104)

The Ansatz (3.103) guarantees that the tangential components of the electric field
are continuous. Furthermore, because of the surface charges, the normal
component of D has to be discontinuous by 

 . (3.105)

To solve this, we expand 

 . (3.106)

This asks for applying the orthogonality relation

 . (3.107)

From (3.106) and (3.107) we obtain

 

z z0= σ x y,( )
σ x y,( )

x0 y0,

σ x x0 y,–( ) σ x0 x y0,–( )=

σ x y y0–,( ) σ x y0 y–,( )= 



ϕ1 2, f k l,( ) k x x0–( )[ ]cos l y y0–( )[ ]cos
0

∞
∫0

∞
∫=

 k2 l2+ z z0––[ ]dkdl   .exp⋅

σ x y,( )

ϕ z ∞±→

z z0≤ z z0≥
z z0=

z z0–
z z0– for    z z0≥      (region 2)    

z0 z– for    z z0≤      (region 1)   .



=

∂ϕ1
∂z

--------- 
 

z z0=

∂ϕ2
∂z

--------- 
 

z z0=
– σ x y,( )

ε0
----------------=

σ x y,( )

σ x y,( ) σ̃ k l,( ) k x x0–( )[ ]cos l y y0–( )[ ]cos kd ld
0

∞
∫0

∞
∫=

  k x x0–( )[ ]cos k' x x0–( )[ ]cos xd
∞–

+∞
∫ πδ k k'–( ) πδ k k'+( )  +=

σ x y,( ) k ' x x0–( )[ ]cos l ' y y0–( )[ ]cos xd yd
∞–

+∞
∫∞–

+∞
∫



154 Formal Methods of Electrostatics

 

 

 

renaming  and  yields

 . (3.108)

For now, we are only interested in a point charge Q at location , for
which

 

(3.109)

The boundary condition (3.105) can now be written in the following way:
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 ,

a comparison reveals that

(3.112)

This is the Fourier integral for the inverse distance.
We have solved a quite simple problem with rather complicated means. We

had already known the potential of a point charge in the infinite space when we
calculated it earlier by much simpler means. The purpose of this example was to
illustrate the methodology. As a by-product did we obtain the important relation
(3.112) for which there may not exist a simpler derivation.

3.5.2.4 Appendix to Section 3.5: Fourier Series and Fourier Integrals

The topic of Fourier series and Fourier integrals with respect to one or two
dimensions automatically arose when separating Laplace’s equation in Cartesian
coordinates. This is a specific case of the more general expansion of functions by
certain orthogonal and complete systems of functions, whose occurrence is typical
for problems of this kind. We will begin the next section (3.6) with general
observations on such systems of functions, which will retroactively highlight the
role of Fourier series and Fourier integrals from a more general point of view.
Sections 3.7 and 3.8 will provide some examples for the expansion by orthogonal
and complete systems of functions. Here, we summarize the most important
formulas for Fourier series and Fourier integrals.
a) Fourier Series
A periodic function f(x) may be represented as a Fourier series. If c is the period,
then the series is represented by

(3.113)

It describes the value of f(x) everywhere, except where f is discontinuous. Where f
is discontinuous the series takes the value

(3.114)

That is, it assumes the average of the left and right sided limit at that point.
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The coefficients  and  of the expansion (3.113) can be found by means
of an orthogonality relation for trigonometric functions.

The integration is carried out over a full period, but does not require to span from 0
to c, it could be any x0 to x0 + c. Multiply the expansion Ansatz (3.113) by

 and , respectively, then integrate the resulting
equation over a full period while making use of (3.115) and (3.116). This gives

(3.117)

(3.118)

In particular, when f(x) is an “even” or “symmetric” function [ ]
then by (3.118) all , that is, the result is a pure “cosine series”. Conversely
when f(x) is an “odd” or “anti-symmetric” function [ ] then by
(3.118) all , that is, the result is a pure “sine series”.

Another option is to expand f(x) as a complex Fourier series

 . (3.121)

Because of 

(3.115)

(3.116)

(3.119)

(3.120)

an bn
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c

---------x 
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c
----------x 

 cos xd
0

c

∫
c
2
--δnm      for  n or m 1≥

c      for  n m 0= =





=

2πn
c

---------x 
 sin 2πm

c
-----------x 

 sin xd
0

c

∫
c
2
--δnm      for  n or m 1≥

c      for  n m 0= =





=

2πnx c⁄( )cos 2πnx c⁄( )sin

  an

2
c
-- f x( ) 2πn

c
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 cos xd
0

c
∫       for  n 1≥

1
c
-- f x( ) xd

0

c
∫       for  n 0=

  









=

  bn
2
c
-- f x( ) 2πn

c
---------x 

 sin xd
0

c
∫= for  n 1≥      

f x( ) f x–( )=
bn 0=

f x( ) f x–( )–=
an 0=

 f x( ) an
2πn

c
---------x 
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n 0=

∞
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c
---------x 
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---------x 
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we may also write

 

This establishes the relationship between the expansions (3.113) and (3.121).

(3.122)

or the inverse relation

(3.123)

To immediately calculate the coefficients  use Ansatz (3.121) and apply the
orthogonality relation

(3.124)

which yields

(3.125)

b) Fourier Integrals
Under certain, very general conditions which we will not discuss here, a function
may be represented as a Fourier integral:

 . (3.126)

We have introduced an arbitrary factor C because the Fourier integral is defined
differently by different authors. The inverse is the Fourier transform of f(x)

 . (3.127)

This is a result of (3.126) and the orthogonality relation 

iα( )exp αcos i αsin+=
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c
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
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c
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0

c
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  dn
1
c
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c
---------– x 
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0

c
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∞–

+∞
∫    =

  f̃ k( ) 1
2πC
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 . (3.128)

Multiplying (3.126) by  and then integrate over x from  through
 just yields (3.127), when also considering (3.128).

When f(x) = f(-x) i.e., f(x) is an even function, then

that is

  . (3.129)

and

  . (3.130)

On the other hand, when f(x) = -f(-x) i.e., f(x) is an odd function, then

that is

  . (3.131)

and

  . (3.132)

Thus there are basically three Fourier integrals
1. the exponential Fourier integral (3.126) and its inverse (3.127)
2. the cosine Fourier integral (3.130) and its inverse (3.129)
3. the sine Fourier integral (3.132) and its inverse (3.131)

To directly derive eqs. (3.129) and (3.130), or (3.131) and (3.132) is possible when
using the orthogonality relations

(3.133)

(3.134)

The choice of the factor C is a mere matter of convenience. Frequently, it is set to
 in (3.126), which causes a factor of  in (3.127). Another frequent

choice is  which makes (3.126) and (3.127) “symmetric”, that is, the
same factor  occurs in (3.127). Similarly, the sine and cosine transforms are
by no means uniquely defined. Frequently the definition of  yields the
factor in (3.130) to become one, or when defining , the factor in (3.132)
becomes one. 
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+∞
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+∞
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π
2
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2
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As a practical matter, because of the different definitions, it is advisable not to
define this factor too early in the calculations. Errors can be excluded when
selecting the best fitting approach (while leaving the factor open), and then
calculate the coefficients by means of the orthogonality relation.

3.6  Complete Orthogonal Systems of Functions

Before starting Separation of Variables for Laplace’s equation in cylindrical and
spherical coordinates, we will generalize the terminology, derived previously from
rather specific examples. Furthermore, their rather hidden analogy to vector
calculus shall be illustrated. Solving boundary value problems, under suitable
conditions, leads to systems of functions which are orthogonal to each other and
are complete in the sense that all possible functions, defined in the given region can
be constructed from them by superposition. Our analysis be in one dimension, as
multiple ones will not change the principle nature of the relations which we are
interested in.

A function f(x), defined in an interval , can be thought of as a vector.
So to speak, x acts as continuous index which identifies the components of the
vector f(x). An integral 

(3.135)

can be regarded as the scalar product of the two vectors f(x) and g(x). f* is the
conjugate complex function to f. Oftentimes we deal with real functions, in which
case it is of course 

 .

In Vector Calculus one introduces a number of basis vectors, depending on the
spatial dimensions, to construct every vector 

 . (3.136)

The system of basis vectors is orthogonal and normalized if
 . (3.137)

The expansion of the vector a by its basis system ei is achieved by scalar
multiplication of eq. (3.136) by ek. This yields

 .

i.e.,
 , (3.138)

and thus

c x d≤ ≤

f  * x( )g x( ) xd
c

 d
∫  f  g 〈 〉=

f  * x( )g x( ) xd
c

 d
∫  f  g 〈 〉 f x( )g x( ) xd

c

 d
∫= =

a aiei
i 1=

n
∑=

ei ek• δik=

a ek• aiei ek•
i 1=

n
∑ aiδik

i 1=

n
∑ ak= = =

ak a ek•=
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 , (3.139)

It is worthwhile to analyze the parts of this sum.

is the projection of a onto the direction given by ei. One may think of this
undetermined product eiei (frequently called dyadic product) to be an operator
which transforms a into another vector, namely the vector that results form
projecting it on ei. Thus eiei is also called projection operator. The resulting vector
is

 . (3.140)

Of course, the sum of all projections has to yield the vector itself, if the system of
basis vectors is complete. In this case, the sum of all basis vectors has to result in
the identity operator (identity tensor):

 . (3.141)

This represents the completeness relation. Eqs. (3.139) and (3.141) are equivalent
and both express completeness of the basis system. The dyadic product is an
operator that has the form of a matrix when writing it in component form. The
dyadic product ab has the components (matrix elements)

The unit vectors of, for example, a three dimensional Cartesian coordinate
system are 

 .

The three projection operators result thereof

Their sum is indeed the identity operator

 .

Applied to a vector

a a ei•( )ei
i 1=

n
∑ eiei( ) a•

i 1=

n
∑= =

eiei( ) a•

ai aiei a eiei• eiei a•= = =

eiei
i 1=

n
∑ 1=

ab( )ik aibk( )=

e1 1 0 0, ,〈 〉=

e2 0 1 0, ,〈 〉=

e3 0 0 1, ,〈 〉=

e1e1

1 0 0
0 0 0
0 0 0

= e2e2

0 0 0
0 1 0
0 0 0

= e3e3

0 0 0
0 0 0
0 0 1

=

eiei
i 1=

3

∑
1 0 0
0 1 0
0 0 1

δik( ) 1= = =

a a1 a2 a3, ,〈 〉=
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gives

which is the respective projection. 
All this can be applied to functions treated as vectors of an infinite

dimensional space. We first build f(x) from a complete system of orthogonal
functions. There are two cases, depending on whether the eigenvalues are discrete
or continuous (or expressed in different words: whether they form a discrete or a
continuous spectrum). Examples for both were given in Section 3.5.
We have therefore the following expansions for f(x): 

For the continuous case, the integration has to be over all possible values of k. The
expansions are based on the orthogonality relations for the basis functions which
are assumed to be normalized. 

where 

Discrete spectrum Continuous spectrum

(3.142)

(3.143)

 

(3.144)
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1 0 0
0 0 0
0 0 0
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a1 0 0, ,〈 〉= =
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c

 d
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c

 d
∫ δ k k'–( )=

f x( )ϕm
* x( ) xd

c

 d
∫  = f x( )ϕ* k x;( ) xd

c

 d
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     an ϕn x( )ϕm
* x( ) xd

c

 d
∫
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∞
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     anδnm
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∞
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     a k( )ϕ k x;( )ϕ* k' x;( ) xd kd
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 d
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* x( ) xd
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This determines the coefficients of the expansion, the components of the vector so
to speak, where relation (3.144) is entirely equivalent to (3.138). The projection
onto the “direction” of  and , respectively is then 

For completeness, the sum of all those projections has to result in the function
itself, i.e., 

At the same time, it also is 

By comparison, we obtain the completeness relations

On the other hand, to calculate the expansion coefficients by means of the
completeness relation is also possible. First, one may apply the identity operator,
that is in our case basically the δ-function, to any function. So we start with

Substituting gives

what immediately leads to the coefficients of the expansion

Let us now consider two functions f(x) and g(x) whose scalar product we aim to
find. f(x) shall have the components

(3.145)

,
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while the components of g(x) shall be 

Then 

Therefore 

which is in complete analogy to Vector Calculus, especially for the case of the
discrete spectrum.

In closing this section we shall provide a few explanatory words on integral
operators. We have already met some of those integral operators when studying the
various Green’s functions in the previous Section 3.5. They cause a transformation
of a function  into another function  in the form of some integral
transform:

. (3.147)

The δ-function is just one such integral operator. It projects a function onto itself.
The image function  is then equal to 

.

(3.146)
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The δ-function thus acts as the identity operator. The function  is called the
kernel of the integral transform. It is also possible to expand these kernels, for
example, for the discrete case we have

. (3.148)

We obtain

i.e.,

(3.149)

Therefore, it is on one hand

and on the other, we can expand 
.

The components of  result from  in the following way:
 , (3.150)

that is by matrix multiplication, again in total harmony with standard vector
calculus. The situation for the continuous spectrum is quite similar.

(3.151)
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(3.152)

and the projection of  onto  is performed by
 , (3.153)

so that we also obtain an integral transformation for the continuous case. Integral
transformations are the continuous analogues of matrix multiplications.

3.7 Separation of Variables of Laplace’s Equation in 
Cylindrical Coordinates

3.7.1 Separation of Variables

Laplace’s equation for the potential F is given by eq. (3.33)

 . (3.154)

To find its solution, the following separation Ansatz shall be used
 (3.155)

to obtain

 . (3.156)

The first two terms solely depend on r and ϕ, the third depends only on z.
This allows us to introduce the separation constant k2 

 . (3.157)

There are several representations to express the result, for example,
 (3.158)

or
 . (3.159)

Now we tackle the r-ϕ dependent part of eq. (3.156) which takes the form

Multiplying by r2 gives

 .

This allows to continue the separation process. Substitute
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 , (3.160)

and obtain
 , (3.161)

or alternatively
 . (3.162)

Where m has to be a whole number because of the necessary periodicity of ϕ. What
remains for R is

 

After dividing by , and introducing the dimensionless coordinate
 , this becomes (3.163)

 . (3.164)

This is one of the most famous equations in mathematical physics, the so-
called Bessel differential equation. Its solution is a linear combination of two
different, linearly independent functions, the so-called cylindrical functions, which
may be chosen in various ways. Such a pair of functions consists of for example,
the so-called Bessel function  and the so-called Neumann function

, that is,
 . (3.165)

Another possibility is to separate the equations in a different manner by
substituting:

 , (3.166)

so that
 (3.167)

or
 . (3.168)

This, together with the dimensionless variable
 , (3.169)

yields for R again the Bessel differential equation

 

and its solution is
 . (3.170)
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It depends on the type of problem to determine which kind of separation is more
appropriate. We will discuss this in the context of several examples. Both
approaches are equivalent and it is possible to transpose from one to the other by
substituting k by ik and vice versa. If the problem is independent of z, then .
This special case leads to fundamental functions R(r), which we will discuss in
Section 3.7.3.5 (see eqs. (3.263) and (3.264).

The functions  and  have significantly different properties
than the functions  and . The argument (ikr) occurs so frequently
that the so-called modified Bessel functions were introduced. The modified Bessel
functions of the first kind are defined by

 (3.171)

and the modified Bessel functions of the second kind are defined by

 (3.172)

This makes it therefore possible to also write the general solution (3.170) in the
following way:

 (3.173)

It shall also be noted that there are specific problems where the separation
constants might have to be chosen differently, e.g., if one wants to specify the
potential at a certain surfaces to be . We will not discuss this any
further, but just note that in this case, m will not be a whole number.

3.7.2 Some Properties of Cylindrical Functions

Here we can only sketch some of the most important characteristics of the
cylindrical functions. Properties of those functions are found in suitable reference
books [3 - 7].

For small arguments  behaves like ,

 , (3.174)

while  diverges for small arguments, namely

 , (3.175)

 . (3.176)

The graph of some of those functions is illustrated in Figures 3.12 through 3.15. 
For very large arguments (asymptotic behavior),  and  behave basically

like damped trigonometric functions, that is
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2
--im 1+ Jm ix( ) iNm ix( )+[ ]=

  R r( ) C̃1Im kr( ) C̃2Km kr( )  +=

ϕ const=

Jm x( ) xm

Jm x( )  x
2
--  

  m 1
m!
------≈ for x 1«

Nm x( )

Nm x( ) m 1–( )!
π

--------------------  2
x
--  

  m
–≈ for x 1   and   m« 1 2 …, ,=

N0 x( ) 2
π
-- γx

2
-----ln 2

π
-- xln≈ ≈ for x 1,      γ 1.781≈( )«

Jm Nm
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 . (3.177)

For small arguments the modified Bessel functions behave somewhat like  and
. Here we have

 , (3.178)

 , (3.179)

 . (3.180)

For large arguments, however, they differ significantly from  and  where
they behave like exponential functions, namely

 . (3.181)

The different asymptotic behavior for large arguments of ,  (like
trigonometric functions) and ,  (like exponential functions) is important and
will be significant in the following examples. It will also be important that  and

 are finite at the origin, while   and  diverge there. In closing, a few
important relations for cylindrical functions are summarized: 

0

1

2

3

4

5

0 1 2 3

K1 x( )

K0 x( ) x

Fig. 3.15

Jm x( ) 2
πx
----- x π

4
---– mπ

2
-------– 

 cos≈

Nm x( ) 2
πx
----- x π

4
---– mπ

2
-------– 

 sin≈








for x ∞→

Jm
Nm

Im x( )  x
2
--  

  m 1
m!
------≈ for 0 x 1«<

Km x( ) m 1–( )!
2

-------------------  2
x
--  

  m
≈ for 0 x 1≤<   and  m 1 2 …  , , ,=

K0 x( ) γx
2
-----ln– xln–≈ ≈ for 0 x 1≤< ,  γ 1.781≈( )

Jm Nm

Im x( ) x( )exp
2πx

----------------≈

Km x( ) π x–( )exp
2x

----------------------------≈








for x ∞→

Jm Nm
Im Km

Jm
Nm Im Km
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Bessel function: Neumann function:

Specifically: Specifically:

and

Modified Bessel function of the 
first kind:

Modified Bessel function of the 
second kind

Specifically: Specifically:

and

Jn 1– x( ) Jn 1+ x( )+ 2n
x

------Jn x( )= Nn 1– x( ) Nn 1+ x( )+ 2n
x

-----Nn x( )=

Jn 1– x( ) Jn 1+ x( )– 2Jn' x( )= Nn 1– x( ) Nn 1+ x( )– 2Nn' x( )=

J n– x( ) 1–( )nJn x( )= N n– x( ) 1–( )nNn x( )=

xd
d Jn x( ) Jn 1– x( ) n

x
--Jn x( )–=

xd
d Nn x( ) Nn 1– x( ) n

x
--Nn x( )–=

xn 1+ Jn x( ) xd∫ xn 1+ Jn 1+ x( )= xn 1+ Nn x( ) xd∫ xn 1+ Nn 1+ x( )=

x n– 1+ Jn x( ) xd∫ x n– 1+– Jn 1– x( )= x n– 1+ Nn x( ) xd∫ x n– 1+– Nn 1– x( )=

J0' x( ) J1 x( )–= N0' x( ) N1 x( )–=

Jn x( )Nn 1+ x( ) Jn 1+ x( )Nn x( )– 2
πx
-----–=

In 1– x( ) In 1+ x( )+ 2In' x( )= Kn 1– x( ) Kn 1+ x( )+ 2Kn' x( )–=

In 1– x( ) In 1+ x( )– 2n
x

------In x( )= Kn 1–– x( ) Kn 1+ x( )+ 2n
x

------Kn x( )=

I n– x( ) In x( )= K n– x( ) Kn x( )=

xd
d In x( ) In 1– x( ) n

x
--In x( )–=

xd
d Kn x( ) Kn 1– x( )– n

x
--Kn x( )–=

xn 1+ In x( ) xd∫ xn 1+ In 1+ x( )= xn 1+ Kn x( ) xd∫ xn 1+ Kn 1+ x( )–=

x n– 1+ In x( ) xd∫ x n– 1+ In 1– x( )= x n– 1+ Kn x( ) xd∫ x n– 1+ Kn 1– x( )–=

I0' x( ) I1 x( )= K0' x( ) K1 x( )–=

Kn x( )In 1+ x( ) Kn 1+ x( )In x( )+ 1
x
--=
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3.7.3 Examples

3.7.3.1 A Cylinder with Surface Charges

An infinitely tall circular cylinder of radius r0 (Fig. 3.16) carries a rotationally
symmetric surface charge, mirrored at the x-y axis (z = 0), that is

 . (3.182)

We want to find its potential. This requires us to solve Laplace’s equation for
region 1 (inside the cylinder surface) and for region 2 (outside the cylinder
surface). Both solutions will be joined together via the boundary conditions. There
is no azimuthal dependency because of the rotational symmetry. Consequently m,
one of the separation constants vanishes

 . (3.183)

This leaves a dependency on z and r, for which we choose the Ansatz according to
(3.167) and (3.173):

 (3.184)

The cosine sum suffices for this problem because of the symmetry ( ).
There are no restrictions on k. In region 1, C2 has to vanish because of the
divergence of K0 at the origin,  which would cause the potential to diverge.
Conversely, in region 2, C1 has to vanish because I0 diverges at infinity. This
allows for an Ansatz like this:

 (3.185)

Fig. 3.16

z

x

1 2
y

r0

0

σ z( ) σ z–( )=

m 0=

Z A1 kzcos A2 kzsin+=

R C1I0 kr( ) C2K0 kr( )+= 



A2 0=

ϕ1 f1 k( ) kz( )cos I0 kr( ) kd⋅
0

∞
∫=

ϕ2 f2 k( ) kz( )cos K0 kr( ) kd⋅
0

∞
∫= 





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On the surface  it has to be

that is

 (3.186)

and

that is

 . (3.187)

The condition (3.186) gives

 , (3.188)

and the condition (3.187), when using 

(3.189)

and 

(3.190)

gives

 . (3.191)

To continue, we need the Fourier transform of ,

 . (3.192)

It follows from (3.188) that
 ,

and by (3.191), using (3.192) gives

 ,

which yields  and :

 .

r r0=
Ez1( )r r0= Ez2( )r r0==

z∂
∂ϕ1

 
 

r r0= z∂
∂ϕ2

 
 

r r0=
– 0=

Dr2( )r r0= Dr1( )r r0=– σ=

r∂
∂ϕ1

 
 

r r0= r∂
∂ϕ2

 
 

r r0=
– σ

ε0
----=

k kz( )sin f2 k( )K0 kr0( ) f1 k( )I0 kr0( )–[ ] kd
0

∞
∫ 0=

I0' ξ( )
ξd

d I0 ξ( ) +I1 ξ( )= =

K0' ξ( )
ξd

d K0 ξ( ) K1 ξ( )–= =

k kz( )cos f1 k( )I1 kr0( ) f2 k( )K1 kr0( )+[ ] kd
0

∞
∫

σ
ε0
-----=

σ z( )

σ z( ) σ̃ z( ) kz( )cos kd
0

∞
∫=

 f1 k( )I0 kr0( )  f2 k( )K0 kr0( )– 0=

 f1 k( )I1 kr0( ) f2 k( )K1 kr0( ) σ̃ k( )
ε0k

-----------–+ 0=

 f1  f2

 f1 k( )
σ̃ k( )K0 kr0( )

ε0k K0 kr0( )I1 kr0( ) K1 kr0( )I0 kr0( )+[ ]
-----------------------------------------------------------------------------------------------=

 f2 k( )
σ̃ k( )I0 kr0( )

ε0k K0 kr0( )I1 kr0( ) K1 kr0( )I0 kr0( )+[ ]
-----------------------------------------------------------------------------------------------=
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By means of the relation (see Section 3.7.2)

 . (3.193)

this simplifies to 

 . (3.194)

This solves our problem:

  . (3.195)

To continue further is generally only possible with numerical methods. The
very general result contains some interesting special cases. For example, consider
the case of a uniformly charged circular loop for which 

 . (3.196)

Where q is its line charge with units [C/m]. We use the orthogonality relation
(3.107) to calculate 

 

that is

 (3.197)

and

 ,

or

 . (3.198)

This reveals another important fact about the δ-function: Its Fourier transform is a
constant (i.e., its spectrum contains all frequencies with the same amplitude). This

K0 kr0( )I1 kr0( ) K1 kr0( )I0 kr0( )+ 1
kr0
-------=

 f1 k( )
σ̃ k( )r0K0 kr0( )

ε0
------------------------------------=

 f2 k( )
σ̃ k( )r0I0 kr0( )

ε0
----------------------------------=









ϕ1
r0
ε0
---- σ̃ k( ) kz( )cos K0 kr0( )I0 kr( ) kd

0

∞
∫=

ϕ2
r0
ε0
---- σ̃ k( ) kz( )cos I0 kr0( )K0 kr( ) kd

0

∞
∫=









σ z( ) qδ z( )=

σ

σ z( ) k'z( )cos zd
∞–

∞
∫ σ̃ k( ) kz( )cos k'z( )cos kd zd

0

∞
∫∞–

∞
∫=

 π σ̃ k( )δ k k'–( ) kd
0

∞
∫ πσ̃ k'( )  ,= =

σ̃ k( ) 1
π
--- σ z( ) kz( )cos zd

∞–

∞
∫=

 1
π
--- qδ z( ) kz( )cos zd

∞–

∞
∫

q
π
--- 0cos q

π
--= = =

qδ z( ) q
π
--- kz( )cos kd

0

∞
∫=

δ z( ) 1
π
--- kz( )cos kd

0

∞
∫=
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is expressed in eq. (3.198), which represents at the same time, both, an interesting
and an important representation of the δ-function. Eq. (3.197) in (3.195) allows to
represent the potential of the uniformly charged circular loop as:

 . (3.199)

Of course, to calculate the potential of the circular loop by much simpler means is
also possible. Integrating according to (2.29) gives.

 , (3.200)

where  represents the total elliptic integral of the first kind:

 , (3.201)

and 

 . (3.202)

In fact, one can prove that the results in (3.199) and (3.200) are identical. One
needs to show that the Fourier transform of  basically yields the elliptic
integral of the first kind. For more details refer to [5], volume 1, p 49, eq. (46).

One might further specialize this problem. For  and , in such a
way that . Then the result has to be again that of a point charge at the
origin. (This has to be the potential of  while  becomes irrelevant):

 . (3.203)

On the other hand, this must be 

 ,

so that 

 . (3.204)

The two relations (3.203) and (3.204) represent the series expansion for the inverse
distance in cylindrical coordinates and correspond to the similar equations (3.111)
and (3.112). In both cases, the calculation of a simple, known problem by means of
a complicated approach is not a superficial luxury. Rather, sometimes to solve

ϕ1
qr0
πε0
-------- kz( )cos K0 kr0( )I0 kr( ) kd

0

∞
∫=

ϕ2
qr0
πε0
-------- kz( )cos I0 kr0( )K0 kr( ) kd

0

∞
∫=









ϕ
qr0

2πε0
----------- l

rr0
-----------K π

2
-- l, 

 =

K π
2
--- l, 

 

K π
2
--- l, 

  ψd
1 l2 ψsin2–

--------------------------------
0

π 2⁄

∫=

l2 4rr0

r2 z2 r0
2 2rr0+ + +

---------------------------------------------=

K0I0

r0 0→ q ∞→
2πr0q Q=

ϕ2 ϕ1

ϕ Q
2π2ε0
-------------- kz( )cos K0 kr( ) kd

0

∞
∫=

ϕ Q
4πε0 r2 z2+
--------------------------------=

 1
r2 z2+

-------------------- 2
π
--- kz( )cos K0 kr( ) k d

0

∞
∫=
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particular problems, requires one to have certain expansions at ones disposal. The
next example shall demonstrate this.

3.7.3.2 Point Charge on the Axis of a Dielectric Cylinder

We want to find the potential caused by a point charge Q at the axis of a dielectric,
circular cylinder ( ). For the remaining space, we assume a different dielectric
( ) (see Fig. 3.17).
This is by no means a trivial problem, but it can be solved with the results obtained
from the previous example. We need to solve Laplace’s equation in region 2, what
is certainly possible with an approach similar to (3.185):

 . (3.205)

The factor in front of the integral is just for convenience and could as well be
regarded as belonging to . In region 1, we have to solve Poisson’s equation
for a point charge. This may be done by superposition of the point charge potential
according to (3.203) and the general solution of Laplace’s equation according to
(3.185), i.e., by

 (3.206)

Remember that the general solution of the inhomogeneous (Poisson) equation is
obtained from the superposition of the specific solution of the inhomogeneous
equation and the general solution of the homogeneous (Laplace) equation.
Significant is now, to know the potential of the point charge in the specific form
that fits this problem. Another way to view the trial functions of (3.205) and
(3.206) is by superposition of the point charge potential and the potential of bound
surface charges at the cylinder surface (wall). The following boundary conditions
apply for  :

ε1
ε2

Fig. 3.17

z

x

1 2
y

r0

0

ε2ε1

ϕ2
Q

2π2ε1
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∞
∫=

g2 k( )

ϕ1
Q

2π2ε1
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∞
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 .

This gives

 

and

or

 

Solved for  and  yields

  . (3.207)

Hereby we used equations (3.189), (3.190), and (3.193). For  , we find that
 and  , that is, , agreeing with (3.203), as expected.

  

z∂
∂ϕ1

 
 

r r0= z∂
∂ϕ2

 
 

r r0=
– 0=

ε1 r∂
∂ϕ1

 
 

r r0=
ε2 r∂

∂ϕ2
 
 

r r0=
– 0=

Q
2π2ε1
-------------- k kz( )sin K0 kr0( ) I0 kr0( )g1 k( ) K0 kr0( )g2 k( )–+[ ] kd

0

∞
∫ 0=

Q
2π2ε1
-------------- k kz( )cos ε1K1 kr0( )– ε1I1 kr0( )g1 k( ) ε2K1 kr0( )g2 k( )+ +[ ] kd

0

∞
∫ 0=

K0 kr0( ) I0 kr0( )g1 k( ) K0 kr0( )g2 k( )–+ 0=

ε1K1 kr0( )– ε1I1 kr0( )g1 k( ) ε2K1 kr0( )g2 k( )+ + 0   .=

g1 g2

g1 k( )
1

ε2
ε1
----– 

  kr0K0 kr0( )K1 kr0( )

1
ε2
ε1
----- 1– 

  kr0I0 kr0( )K1 kr0( )+
---------------------------------------------------------------------------=

g2 k( ) 1

1
ε2
ε1
----- 1– 

  kr0I0 kr0( )K1 kr0( )+
---------------------------------------------------------------------------=













ε1 ε2=
g1 0= g2 1= ϕ1 ϕ2 ϕ= =

Fig. 3.19

ε1 ε2>

Fig. 3.18

ε1 ε2<
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The solution obtained by substituting (3.207) in (3.205) and (3.206) needs to
be solved numerically. Qualitative illustrations are presented in Fig. 3.18 ( )
and Fig. 3.19 ( ). Those figures compare to Fig. 2.55 and Fig. 2.56, whereby
it is to note that field lines are shown there, while the equipotential surfaces are
drawn here.

3.7.3.3 Dirichlet’s Boundary Value Problem and the Fourier-Bessel Series

Consider the cylinder shown in Fig. 3.20 with radius  and height h. We want to
find the potential inside the charge-free cylinder with the following boundary
conditions.

 

This is the cylindrical analogue to the example in Section 3.5.2.1. Again,
 because of the rotational symmetry. For the radial part R, we may choose

either J0 or I0, but not N0 or K0 since those let the potential at the axis diverge. The
potential has to also vanish for . J0 has zeros for real arguments, I0 does not.
The convenient choice is thus J0, For the z-dependency, we may choose an
approach, for example, based on (3.158) where only the sinh is an option because
of the restriction  for . We suggest that solving the problem is
possible by superposing  expressions of the form:

 .

Hereby, the condition
 (3.208)

ε1 ε2<
ε1 ε2>

Fig. 3.20
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ϕ 0=        on the remaining surface   .
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r r0=

ϕ 0= z 0=

J0 kr( ) kzsinh
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has to be fulfilled.  has an infinite number of zeros, like a trigonometric
function, which it approaches for large arguments. Suppose the zeros are at 
then

 (3.209)

where
 , (3.210)

and
 

or

 . (3.211)

This determines the eigenvalues of our problem. Note the similarity to the example
of Section 3.5.2.1, in particular eq. (3.69). This determines the Ansatz for this
problem:

 . (3.212)

This introduces us to a new kind of series expansions, i.e., expansions by functions
, which are typical for cylindrical problems, just as Fourier series are for

Cartesian problems. This is known as the Fourier-Bessel series – a fitting name,
which simultaneously expresses its similarity to Fourier series and its relation to
Cylindrical problems.

Before continuing to solve this problem, we would like to discuss Fourier-
Bessel series some more. They are generally understood as being series expansions
of the function , defined within the interval  and are of the form

 , (3.213)

where  is the nth zero of . Such expansions are useful only if the functions
 form a complete system within this interval. This is the case. They are

also orthogonal to each other in the following sense

 . (3.214)

Strictly speaking, the functions  are orthogonal to each other. This can
also be expressed in the following form: In the interval , the functions

 are orthogonal with the weight function x. Using eq. (3.214) enables us
to write the coefficients  of the expansion given in eq. (3.213):

J0
λ0n

J0 λ0n( ) 0= n 1 2 …, ,=

λ01 λ02 λ03 …< < <

kr0 λ0n=

k kn
λ0n
r0

--------= =

ϕ CnJ0 knr( ) knz( )sinh
n 1=

∞
∑=

J0 knr( )

 f x( ) 0 x 1≤ ≤

  f x( ) CnJm λmnx( )  
n 1=

∞
∑=

λmn Jm
Jm λmnx( )

  xJm λmnx( )Jm λmn'x( ) xd
0

1
∫

1
2
-- Jm' λmn( )[ ]2δnn'   =

xJm λmnx( )
0 x 1≤ ≤

Jm λmnx( )
Cn
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so that 

 . (3.215)

S u b s t i t u t i n g   i n  t h e  e x p a n s i o n  ( 3 . 2 1 3 )  a n d  c o m p a r i s o n  w i t h
 yields the completeness relation. In this case we have

 . (3.216)

With this result, we return to our example, i.e. the statement in eq. (3.212). It
fulfills all boundary conditions, except the one at . There, it shall be

, thus

 

and substituting

 

gives

 

where , i.e., . By eq. (3.215) it is now

 

Since
 , (3.217)

we finally obtain

 f x( )xJm λmn'x( ) xd
0

1
∫ Cn xJm λmnx( )Jm λmn'x( ) xd

0

1
∫

n 1=

∞

∑=

Cn
1
2
-- Jm' λmn( )[ ]2δnn'

n 1=

∞

∑=

Cn'
1
2
-- Jm' λmn'( )[ ]2=

   Cn

2  xf x( )Jm λmnx( ) xd
0

1
∫

Jm' λmn( )[ ]2
-----------------------------------------------------   =

Cn
 f x( )  δ x x'–( )f x'( ) x'd∫=

  
2x'Jm λmnx( )Jm λmnx'( )

Jm' λmn( )[ ]2
---------------------------------------------------------

n 1=

∞

∑ δ x x'–( )  =

z h=
ϕ ϕh r( )=

ϕh r( ) CnJ0 knr( ) knh( )sinh
n 1=

∞

∑=

CnJ0 λ0n
r
r0
---- 

  λ0n
h
r0
---- 

 sinh
n 1=

∞

∑=

ξ r
r0
----=

ϕh r0ξ( ) Cn λ0n
h
r0
---- 

 sinh J0 λ0nξ( )
n 1=

∞

∑=

0 r r0≤ ≤ 0 ξ 1≤ ≤

   Cn λ0n
h
r0
---- 

 sinh
2  ξ'J0 λ0nξ'( )ϕh r0ξ'( ) ξ'd

0

1
∫

J0' λ0n( )[ ]2
------------------------------------------------------------------   =

J0' J1–=
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. (3.218)

As an example, consider the simple special case where
 .

Here, one has to evaluate the integral

Where the relation  was used. The final result is

 . (3.219)

Table 3.1 lists the first four zeros of  and the corresponding values of :

It follows, by the way, from eq. (3.177) that for large arguments

 (3.220)

where

 (3.221)

which is already rather accurate for .

Table 3.1

n

1 2.4048 + 0.5192

2 5.5201 - 0.3403

3 8.6537 + 0.2715

4 11.7915 - 0.2325

ϕ ξ z,( )
2  ξ'J0 λ0nξ'( )ϕh r0ξ'( ) ξ'd

0

1
∫ J0 λ0nξ( )

λ0nz
r0

---------- 
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∫
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ϕ0

λ0n
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--------λ0nJ1 λ0n( )
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-------------------------  .= =
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ϕ r z,( ) ϕ0

2J0 λ0n
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λ0nJ1 λ0n( ) λ0n
h
r0
---- 

 sinh
-----------------------------------------------------------

n 1=

∞

∑=

 J0 J1

λ0n J1 λ0n( )

λ0n n 1
4
--– 

  π≈

J1 λ0n( ) 1–( )n 1– 2
πλ0n
------------≈

n 4=



181

3.7.3.4 Rotationally Symmetric Surface Charges in the Plane z = 0 and the 
Hankel Transformation

Consider the surface charges  that are distributed in the plane  in a
rotationally symmetric way. The task is to find the thereby created potential.
Obviously, the potential may not diverge, neither at  nor in the limit

. The Ansatz

  (3.222)

meets these restrictions.  For  we have to fulfill

 .

The first restriction immediately yields
 .

With this result, the second restriction then gives

  . (3.223)

The task is now to solve this equation for f(k), that is, to express f(k) as a function
of . We have dealt with a similar example previously, which could be solved
by Fourier transformation in Cartesian coordinates (Sect. 3.5.2.3, but see also Sect.
3.7.3.1). However, the integral equation, which eq. (3.223) represents and needs
evaluation, can not be solved by Fourier transforms. On the other hand, we were
able to solve finite problems of similar kind by the Fourier series for the Cartesian
case, and by the analogous Fourier-Bessel series in case of cylindrical problems.
What we therefore need is, in analogy to the Fourier transform, an integral
transform for cylindrical problems, where for example, Bessel functions replace
the exponential functions. Such transforms do indeed exist. Those are the so-called
Hankel transforms. This relation is better expressed in the seldom used name
Fourier-Bessel transform. The Hankel transforms assigns to the function  a
new function  (its Hankel transform) in the following form:

  (3.224)

and its inverse

 . (3.225)

σ r( ) z 0=

r 0=
z ∞±→

ϕ1 f1 k( )J0 kr( ) +kz( )exp kd
0

∞
∫= for  z 0<( )

ϕ2 f2 k( )J0 kr( ) kz–( )exp kd
0

∞
∫ for  z 0>( )= 






z 0=

r∂
∂ϕ1

 
 

z 0= r∂
∂ϕ2

 
 

z 0=
– 0=

z∂
∂ϕ1

 
 

z 0= z∂
∂ϕ2

 
 

z 0=
–

D2 D1–
ε0

------------------- σ r( )
ε0

----------= =

 f1 k( ) f2 k( ) f k( )= =

f k( )J0 kr( )2k kd
0

∞
∫

σ r( )
ε0

-----------=

σ r( )

 f x( )
 f̃ k( )

   f̃ k( ) x f x( )Jm kx( ) x  d
0

∞
∫=

   f x( ) k f̃ k( )Jm kx( ) k  d
0

∞
∫=
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This relation rests upon the orthogonality relation

 . (3.226)

Multiplying (3.225) by , then integrating it from 0 to  yields

 

This is just (3.224). The result of specifically expanding the δ-function  is
 

and thus

 . (3.227)

That is just the completeness relation. Just as before for the Fourier transform, this
is an example of expanding by a basis system with a continuous eigenvalue
spectrum. The general formalism was explained in Sect. 3.6, It shall be noted that it
is possible (and actually done) to define the Hankel transform differently – that is,
with different factors. We have chosen a definition that makes the eqs. (3.224) and
(3.225) entirely symmetric.

Now, we are enabled to solve eq. (3.223). We multiply it by  and then
integrate over r from 0 to 

 

i.e.,

 

and

  (3.228)

which solves our problem.
A simple example of how to apply these results is that of the uniformly

charged circular loop with 
  ,

where q is its line charge. Then we write

  kxJm kx( )Jm k'x( ) xd
0

∞
∫ δ k k'–( )  =

xJm k'x( ) ∞

f x( )xJm k'x( ) xd
0

∞
∫ k f̃ k( )Jm kx( )xJm k'x( ) kd

0

∞
∫ xd

0

∞
∫=

 f̃ k( )δ k k'–( ) kd
0

∞
∫ f̃ k'( )  .= =

δ x x'–( )

 f̃ k( ) x'Jm kx'( )=

  δ x x'–( ) kx'Jm kx'( )Jm kx( ) x  d
0

∞
∫=

rJ0 k'r( )
∞

f k( )J0 kr( )2krJ0 k'r( ) kd rd
0

∞
∫0

∞
∫

1
ε0
----- σ r( )rJ0 k'r( ) rd

0

∞
∫=

2f k( )δ k k'–( ) kd
0

∞
∫ 2f k'( ) 1

ε0
-----σ̃ k'( )= =

f k( ) 1
2ε0
--------σ̃ k( )=

ϕ1 2,
1

2ε0
-------- σ̃ k( )J0 kr( ) k– z( )exp kd

0

∞
∫=

σ̃ k( ) rσ r( )J0 kr( ) rd
0

∞
∫=









σ r( ) qδ r r0–( )=
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and

  . (3.229)

This represents a potential which we have already solved in a different way. As
previously (3.199), so eq. (3.229) is also identical to (3.200) (refer to [5], Vol. II, p
14, eq. (17)).
We may proceed with a point charge ( ) and obtain

 , (3.230)

having used 
 .

From this follows the requirement that

  (3.231)

(refer to [5], Vol. II, p 9, eq. (18)).

3.7.3.5 Charge Distributions that are not Rotationally Symmetric

So far, we discussed problems with rotational symmetry. For this reason, the
parameter m was always zero ( ). Now, we want to solve problems by
separation in cylindrical coordinates that lack rotational symmetry. Consider a
cylinder of radius  with a surface charge density of

  (3.232)

that is a point charge at . The potential F can be written in the form

(3.233)

The expression at the top is for  while the bottom one is for . This
Ansatz was chosen in such a way that F, together with the tangential component of
the electric field,  is continuous for . Furthermore, it has to be

  (3.234)

i.e.,

σ̃ k( ) q rδ r r0–( )J0 kr( ) rd
0

∞
∫ qr0J0 kr0( )= =

  ϕ1 2,
qr0
2ε0
-------- J0 kr0( )J0 kr( ) k– z( )exp k  d

0

∞
∫=

Q 2πr0q r0 0 q ∞→,→,=

ϕ1 2,
Q

4πε0
------------ J0 kr( ) k– z( )exp kd

0

∞
∫=

J0 0( ) 1=

  1
r2 z2+

-------------------- J0 kr( ) k– z( )exp k  d
0

∞
∫=

m 0=

r0

σ ϕ z,( ) Q
r0
----δ z( )δ ϕ ϕ0–( )=

z 0 ϕ, ϕ0= =

Fi a,

Im kr( )Km kr0( )

Im kr0( )Km kr( ) 
 
 

fm k( ) mϕcos gm k( ) msin ϕ( )+[ ] kz( )cos kd
0

∞

∫
m 0=

∞

∑=

r r0≤ r r0≥

r r0=

Ear Eir–( )r r0= r∂
∂Fi

r∂
∂Fa– 

 
r r0=

Q
ε0r0
----------δ z( )δ ϕ ϕ0–( )= =
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(3.235)

By means of the relations of Section 3.7.2, we obtain

 . (3.236)

Multiply (3.235) with  and , respectively. Then
integrate over z and ϕ, using the orthogonality relation to obtain

(3.237)

(3.238)

 . (3.239)

Now we substitute  for z, that is, the charge is located at . With
these coefficients the result is

(3.240)

We obtain for the inverse distance between the points  and 

(3.241)

This formula is more general than the previous result of eq. (3.204). which may be
obtained in the limit  and . The rational behind this is that

 and  for , that is, . Now, only the bottom
expression is of interest since .

A different approach is also possible. Consider the plane  carrying the
point charge Q at , which is represented by the surface charge density

 . (3.242)

The Ansatz for the potential is now

k kz( )cos Im' kr0( )Km kr0( ) Im kr0( )Km' kr0( )–[ ]
0

∞

∫
m 0=

∞

∑

        fm k( ) mϕcos gm k( ) msin ϕ( )+[ ]dk⋅ Q
r0
----δ z( )δ ϕ ϕ0–( )=









Im' kr0( )Km kr0( ) Im kr0( )Km' kr0( )– 1
kr0
-------=

k'z m'ϕcoscos k'z m'sin ϕcos

 f0 k( ) Q
2π2ε0
--------------=

 fm k( ) Q
π2ε0
----------- mϕ0cos  ,= m 1≥

 gm k( ) Q
π2ε0
----------- msin ϕ0=

z z0– r0 r0 ϕ0 z0, ,( )

  Fi a,
Q

2π2ε0
--------------

Im kr( )Km kr0( )

Im kr0( )Km kr( ) 
 
 

0

∞

∫
m 0=

∞

∑=

                          k z z0–( )[ ]cos m ϕ ϕ0–( )[ ]cos 2 δ0m–( ) k . d⋅

r r ϕ z, ,( ) r0 r0 ϕ0 z0, ,( )

  1
r r0–
---------------- 2

π
--

Im kr( )Km kr0( )

Im kr0( )Km kr( ) 
 
 

0

∞

∫
m 0=

∞

∑=

                          k z z0–( )[ ]cos m ϕ ϕ0–( )[ ]cos 2 δ0m–( ) k . d⋅

r0 0= z0 0=
I0 0( ) 1= Im 0( ) 0= m 1≥ Im 0( ) δ0m=

r r0≥ 0=
z 0=

r0 r0 ϕ0 0, ,( )

σ r ϕ,( ) Q
r0
----δ r r0–( )δ ϕ ϕ0–( )=
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 . (3.243)

This Ansatz was particularly chosen so that at the boundary ,  F and its
tangential derivatives are continuous. Furthermore we have

 . (3.244)

One uses the same procedure again: multiply with  and
, respectively, then integrate over r and ϕ ,  apply the

orthogonality relation, and finally obtain

(3.245)

(3.246)

 . (3.247)

All that remains now for a charge located at point ,  is to replace z by
. Applying the just obtained coefficients gives

(3.248)

and the inverse distance is

(3.249)

These equations represent a generalization of the previously found eqs. (3.230) and
(3.231). One obtains these equations by setting , and making use of
the fact that  .

We were able to be rather brief here, as the procedure is similar to that of
Sections (3.7.3.1) and (3.7.3.4). Dividing the potentials (3.240) and (3.248) by Q
yields the respective Green’s functions . If there are arbitrary surface
charges 

 (3.250)

F Jm kr( ) fm k( ) mϕcos gm k( ) msin ϕ( )+[ ] k z–( )exp kd
0

∞

∫
m 0=

∞

∑=

z 0=

Ez z 0>( ) Ez z 0<( )–[ ]z 0= 2kJm kr( )
0

∞

∫
m 0=

∞

∑=

                                                        fm k( ) mϕcos gm k( ) msin ϕ( )+[ ] kd⋅

                                           Q
ε0r0
----------δ r r0–( )δ ϕ ϕ0–( )=

r Jm k'r( ) m'ϕ( )cos⋅
r Jm k'r( ) m'ϕ( )sin⋅

 f0 k( ) Q
4πε0
------------J0 kr0( )=

 fm k( ) Q
2πε0
-----------Jm kr0( ) mϕ0cos  ,= m 1≥

 gm k( ) Q
2πε0
-----------Jm kr0( ) msin ϕ0 =

r0 r0 ϕ0 z0, ,( )
z z0–

  F r( ) Q
4πε0
----------- 2 δ0m–( )Jm kr( )Jm kr0( )

0

∞

∫
m 0=

∞

∑=

                          k z z0––[ ] m ϕ ϕ0–( )[ ]cosexp k  d⋅

  1
r r0–
---------------- 2 δ0m–( )Jm kr( )Jm kr0( ) k z z0––[ ] m ϕ ϕ0–( )[ ]cosexp k.d

0

∞

∫
m 0=

∞

∑=

r0 0 z0, 0= =
Jm kr0( ) Jm 0( ) δ0m= =

G r r0,( )

 σ σ z ϕ,( ) =
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or
(3.251)

prescribed on the cylinder at  or on the plane surface , then the
related potentials are

 , (3.252)

where those integrals have to be evaluated over the cylinder surface or the plane
where

 (3.253)

or
 . (3.254)

Notice that the rotationally symmetric charge distributions of Sections 3.7.3.1 and
3.7.3.4 are contained in this solution as special cases. Another special case shall be
discussed here as an example. Suppose that on the surface of a cylinder at ,
there exists a surface charge

 . (3.255)

This allows one to calculate  based on (3.240) to obtain

(3.256)

Since the charge distribution (3.255) is independent of , integration over 
yields

 , (3.257)

and one needs to investigate the Bessel functions for vanishing arguments. Using
eqs. (3.178) through (3.180) gives

(3.258)

and

 , (3.259)

where C, although it becomes infinitely large, is still insignificant and may be
arbitrarily chosen. Finally, one obtains

 σ σ r ϕ,( ) =
r r0= z z0=

F r( ) G r r0,( )σ r0( ) A0d∫=

A0d r0dϕ0dz0=

A0d r0dϕ0dr0=

r r0=

 σ σ0 nϕ cos=

Fi a, r( )

 Fi a, ϕ0d
0

2π

∫ z0d
∞–

+∞

∫ kd
0

+∞

∫
σ0

2π2ε0
--------------

Im kr( )Km kr0( )

Im kr0( )Km kr( ) 
 
 

m 0=

∞

∑=

                    k z z0–( )[ ]cos m ϕ ϕ0–( )[ ]cos 2 δ0m–( )r0 nϕ0 cos⋅

z0 z0

k z z0–( )[ ]cos z0d
∞–

+∞
∫ 2πδ k( )=

In kr( )Kn kr0( )
k 0→
lim 1

2n
------ r

r0
---- 

  n
=

In kr0( )Kn kr( )
k 0→
lim 1

2n
------

r0
r
---- 

 
n

=








  for n 0≠

I0 kr( )K0 kr0( )
k 0→
lim C r0ln–=

I0 kr0( )K0 kr( )
k 0→
lim C rln–=







  for n 0=
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(3.260)

and

 , (3.261)

where has been chosen. For the current case, it is easier to derive this
result by not using the general formulas. The independence of z, makes it possible
to start from the differential equation

 , (3.262)

which results from eqs. (3.156) and (3.160) with . We can immediately write
its solutions 

 , (3.263)

 . (3.264)

Thus, for a cylinder of radius  (carrying arbitrary surface charges) we obtain 

, (3.265)

 . (3.266)

Again, the coefficients were chosen such that the potential and thereby the
tangential components of the electric field are continuous at the surface of the
cylinder . If the surface charge (3.255) is prescribed, then the following
must hold

(3.267)

Obviously, except for An, all terms Am and Bm vanish:

 Fi a,
σ0r0
2nε0
-----------

r
r0
---- 

  n

r0
r
---- 

 
n

 
 
 
 
 
 
 

nϕ cos=   for n 0≠

 Fi a,
σ0r0

ε0
----------

0
r
r0
----ln

 
 
 
 
 

–=                for n 0=

C r0ln=

r
r∂

∂ r
r∂

∂ R r( ) m2R r( )=

k 0=

R Arm B 1
rm
-----+= for m 0≠

R A B rln+= for m 0=
r0

 Fi
r
r0
---- 

  m
Am mϕ cos Bm msin ϕ +( )

m 1=

∞

∑ 0+=

 Fa
r0
r
---- 

 
m

Am mϕ cos Bm msin ϕ +( )
m 1=

∞

∑ A0
r
r0
----ln+=

r r0=

Era  Eri–( )r r0= r∂
∂Fi

r∂
∂Fa– 

 
r r0=

=

  2m
r0
------- Am mϕ cos Bm msin ϕ +( )

A0
r0
------–

m 1=

∞

∑=

  
σ0
ε0
----- nϕ cos=
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 , (3.268)

 , (3.269)

which just leads to the potentials provided above (3.260) and (3.261). Thus it
becomes now obvious that the direct calculation of the potentials is indeed simpler
than by using the general formulas. The reason for this is that here, the modified
Bessel functions converge onto the elementary solutions (3.263) for and
(3.264) for , which is obvious from eqs. (3.178) through (3.180). For

, we obtain the solutions we already know, i.e., the logarithmic potential
outside and a constant potential inside, where the reference point was chosen such
that the potential vanishes at the cylinder surface . Since,

 , (3.270)

thus

 . (3.271)

3.8 Separation of Variables for Laplace’s Equation in 
Spherical Coordinates

3.8.1 Separation of Variables

By eq. (3.43), the potential equation for the potential F in spherical polar
coordinates is 

 . (3.272)

We attempt to separate this equation via the product solution
 . (3.273)

Multiplying eq. (3.272) by

yields

 . (3.274)

The first two terms solely depend on r and θ, the last solely on ϕ. This allows us to
separate the equations, for example, by substituting

An
σ0r0
2nε0
-----------= for n 0≠

Ao
σ0r0

ε0
-----------–= for n 0=

m 0≠
m 0=

n 0=

r r0=
2πr0σ0 q=

 Fa
σ0r0

ε0
-----------– r

r0
----ln q

2πε0
-----------– r

r0
----ln= =

1
r2
----

r∂
∂ r2

r∂
∂ 1

r2 θsin
----------------

θ∂
∂ θ

θ∂
∂sin 1

r2 θsin2
------------------ ∂2

∂ϕ2
---------+ + 

  F 0=

F r θ ϕ, ,( ) R r( )D θ( )φ ϕ( )=

r2 θsin2

R r( )D θ( )φ ϕ( )
------------------------------------

θsin2

R r( )
-------------

r∂
∂ r2

r∂
∂ R r( ) θsin

D θ( )
------------

θ∂
∂ θ

θ∂
∂ D θ( )sin 1

φ ϕ( )
----------- ∂2

∂ϕ2
---------φ ϕ( )+ + 0=
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 , (3.275)

with its general solution
 (3.276)

or equivalently
 . (3.277)

Here, m is an integer if the dependency on ϕ is periodic with the period . Then,
after dividing eq. (3.274) by  we obtain 

 . (3.278)

Now the first term solely depends on r, while the others solely depend on θ. This
permits further substitution

 , (3.279)

from which we obtain the general solution

 , (3.280)

which may instantly be verified by substitution. Substituting (3.279) into (3.278)
and multiplying by  gives

 . (3.281)

This important differential equation is identified as the generalized Legendre
equation, and its solutions are the Associated Legendre functions. For the special
case of , they are called Legendre functions. Since this is a differential
equation of second order, there must be two linearly independent solutions, i.e., the
associated Legendre functions of the first and second kind. Only functions of the
first kind are finite everywhere on the sphere, i.e., for all values of θ, while the ones
of the second kind have singularities at the poles (at  and ).
Therefore, when solving a problem that includes the poles, one has to exclude the
associated Legendre functions of the second  kind, since they would cause the
potential to diverge. For this reason, we will not study them further, realizing that
we exclude certain boundary value problems, namely those which do not contain
the poles  or  . (Notice also that our choice of integer values for m
represents another restriction on the generality, as we always take the whole space
of angles  and not just a fraction thereof). So, we only study the
associated Legendre functions of the first kind. These are finite only for n being
whole numbers. They are labelled by , and we have

 . (3.282)

1
φ ϕ( )
----------- ∂2

∂ϕ2
---------φ ϕ( ) m2–=

φ A1 imϕ( )exp A2 imϕ–( )exp+=

φ Ã1 mϕ( )cos Ã2 mϕ( )sin+=

2π
θsin2

1
R r( )
----------

r∂
∂ r2

r∂
∂ R r( ) 1

θsin D θ( )
-----------------------

θ∂
∂ θ

θ∂
∂ D θ( )sin m2

θsin2
-------------–+ 0=

1
R r( )
----------

r∂
∂ r2

r∂
∂ R r( ) n n 1+( )=

R r( ) B1rn B2

rn 1+
------------+=

D θ( )

1
θsin

----------
θ∂

∂ θ
θ∂

∂ D θ( )sin n n 1+( ) m2

θsin2
-------------– D θ( )+ 0=

m 0=

θ 0= θ π=

θ 0= θ π=

0 ϕ 2π≤ ≤

Pn
m

D θ( ) Pn
m θcos( )=
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Specifically for 
 . (3.283)

Frequently, the variable
 . (3.284)

is introduced. This changes the differential equation (3.281) into

 . (3.285)

and
 . (3.286)

The functions
(3.287)

or
(3.288)

are called spherical harmonics, which is the same name as for the functions
 . (3.289)

The name reflects on the fact that when holding r fixed, the angles  address all
points on the sphere with . The various sorts of spherical harmonics are
all solutions of the differential equation

 , (3.290)

which emerges from (3.274), when one separates only the radial part.
The  can be expressed in the following way:

 . (3.291)

This makes the simplest spherical harmonics (Legendre polynomials)

 . (3.292)

etc. The simplest associated Legendre functions are

m 0=
D θ( ) Pn

0 θcos( ) Pn θcos( )= =

ξ θcos   dξ, θsin dθ–= =

ξ∂
∂ 1 ξ2–( )

ξ∂
∂ D ξ( ) n n 1+( ) m2

1 ξ2–
--------------– D ξ( )+ 0=

D ξ( ) Pn
m ξ( )=

Pn
m θcos( ) mϕ( )cos

Pn
m θcos( ) mϕ( )sin

Yn
m Pn

m θcos( ) imϕ( )exp=

θ ϕ,
r const=

1
θsin

----------
θ∂

∂ θ
θ∂

∂sin n n 1+( ) 1
θsin2

------------- ∂2

∂ϕ2
---------+ + F θ ϕ,( ) 0=

Pn
m

Pn
m ξ( ) 1 ξ2–( )m 2⁄

2nn!
---------------------------- dn m+

dξn m+
----------------- ξ2 1–( )n=

P0
0 P0 1= =

P1
0 P1 ξ θcos= = =

P2
0 P2

1
2
-- 3ξ2 1–( ) 1

2
-- 3 θcos2 1–( ) 1

4
-- 3 2θcos 1+( )= = = =








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 (3.293)

etc. It is only necessary to evaluate  m-values which are less or equal to n, as 
 . (3.294)

To expand an arbitrary function within the interval  by  is possible.
For this purpose, use the orthogonality relation

 . (3.295)

As we have already seen before, the angular functions are orthogonal. For the
given interval , the orthogonality relations are

 . (3.296)

The exponential functions  are also orthogonal

 . (3.297)

Note that according to the definition (3.135), the scalar product of complex
functions requires the use of the complex conjugate, that is, . The
relations (3.296) and (3.297) are equivalent because of 

Of course, there is a continuum analogue for (3.297), which shall be given for
comparison:

 . (3.298)

This formula is the basis for the exponential Fourier transformation. It also reveals
an important expression for the δ-function. 

 . (3.299)

Because of the symmetry of the cosine function and the anti-symmetry of the sine
function, this allows one to write
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 .

This represents a slightly different form from the previously used eq. (3.198).
The orthogonality of the respective product functions, i.e. of the spherical

harmonics, is a consequence of eqs. (3.295) through (3.297). For instance, it is

 

 

 

  (3.300)

where we used the solid angle on the sphere’s surface
 . (3.301)

Furthermore, integrating over the entire solid angle gives

 . (3.302)

For the general solution of the potential we may try the form

(3.303)

as well as this form

 . (3.304)

The properties of the spherical harmonics are compiled in the previously
mentioned books  [3-7] (see Section 3.7.2).
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3.8.2 Examples

3.8.2.1 Dielectric Sphere in a Uniform Electric Field

Let us start with a simple problem, whose solution is already known (Sect. 2.12),
namely the problem of a sphere in a uniform electric field (Fig. 3.21). The potential
of the outside applied electric field  is

 . (3.305)

The potential due to the bound charges at the sphere’s surface has to be added. For
the inside potential we write

 . (3.306)

This is a result of the Ansatz (3.303) and the rotational symmetry .  has
to be zero to avoid the singularity at the center of the sphere. Conversely, for the
outside space we write

 .

Comparison with (3.292) reveals that , i.e., one might as well write:

 . (3.307)

F has to be continuous at  so that the tangential components of E will be
continuous there. This requires that

Fig. 3.21
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 . (3.308)

Furthermore, the normal component of D has to be continuous, which requires that

 .

that is

 . (3.309)

The pair of equations for   is

It has only trivial solutions

For , however, the solutions are

which gives

 . (3.310)

This gives the potential inside 
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(3.311)

in accordance with our previous result (2.136). Thus for  we obtain

(3.312)

which is in complete agreement with our previous result (2.139) 

3.8.2.2 A Sphere Carrying an arbitrary Surface Charge

Consider a sphere of radius  and the surface charge
 . (3.313)

By eq. (3.303) the potentials inside and outside are

. (3.314)

The coefficients were chosen such that the potential is continuous at the sphere’s
surface at 

 . (3.315)

This forces the tangential component of the electric field to be continuous. The
boundary condition 

(3.316)

has to be met as well. Therefore

 . (3.317)

Mul t ip ly ing  th i s  equa t ion  by   and  ,
respectively, then integrating over the solid angle  and using the
orthogonality relation (3.300) gives the coefficients  and , and thereby
solves the problem. We illustrate with a further example

 (3.318)

i.e., a point charge Q on the surface of the sphere at location . We thus
obtain from Green’s function for this problem which can be used to solve the
general problem of eq. (3.313). We obtain
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This gives for 

 (3.319)

while  is insignificant. For  we obtain

 (3.320)

 . (3.321)

Finally we obtain

 (3.322)

having used the trigonometric identity
 .

The factor  ensures that the special case of  is covered correctly.
Notice the term in braces in eqs. (3.314) and (3.322): The upper term applies to the
case  , while the lower one for covers  . The potential is of course
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As a result of this, we obtain the oftentimes useful series of the inverse distance as
an expansion of spherical harmonics:

(3.324)

For a field point r on the positive z-axis, we have  and . Thus
 , (3.325)

which simplifies eq. (3.324)

 . (3.326)

We obtain the Green’s function  when dividing  (eq. (3.322) by Q.
Then, the potential for an arbitrary distribution of surface charges (3.313) is

 . (3.327)

A specifically simple example is that of a constant surface charge
 . (3.328)

The only term left in this case is the one where  which yields

 

 , (3.329)

as required.
The power series of the inverse distance as an expansion by spherical

harmonics is of significant interest for electromagnetic field theory. Consider an
arbitrary distribution of volume charges. We aim to compute the potential at an
arbitrary point outside the region of this volume charge distribution. Without
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limiting the generality, we simplify by selecting that point to be on the z-axis,
where  (see Fig. 3.22).
Then by eq. (3.326)

(3.330)

This is the so-called multipole expansion of the potential for a charge distribution.
It sorts these into contributions which decrease by powers of . These are the
moments of charge distribution and the individual terms (potentials) are called
monopole, dipole, quadrupole, octopole moment, etc. If the total charge is zero,
that is, if

 , (3.331)

then the dipole becomes the leading term of the series in this asymptotic charge
distribution, given that it does not also vanish. Now, consider for instance, a dipole
with charge  at ,  or , then the dipole potential
becomes

(3.332)

as required for a point at the axis for which . If the dipole potential also
vanishes, then the next significant term is the quadrupole potential, etc. Notice that
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Fig. 3.22
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even a point charge has multipole moments if it is not located at the origin. Using
eq. (3.330) for a point charge yields for the potential 

 , (3.333)

which corresponds to the inverse distance eq. (3.326) for  .
If the point for which the potential should be determined is not on the z-axis,

then the more general eq. (3.324) for the inverse distance has to be used, which
leads to inconvenient expressions for the individual multipole moments.

3.8.2.3 Dirichlet’s Problem for a Sphere

Consider the point charge  at location  inside a sphere with radius
. At the sphere’s surface, the potential is specified to be zero. Without any loss

of generality, we may assume that the charge is located on the z-axis ( ).
One obtains the potential by superposition of the specific solution of the
inhomogeneous Poisson equation, and the general solution of the homogeneous
Laplace equation, i.e., we try

. (3.334)

The first term represents the potential of the point charge in the infinite space for
 (top) and  (bottom), which is eq. (3.322) and (3.325) applied to the
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Therefore
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The second term of (3.334) is the solution of Laplace’s equation for inside the
sphere ( ). It already considers the rotational symmetry of the field, which is
established by the charge on the z-axis. This second term represents the effect of
the charges on the sphere’s surface. This term on its own, using (3.335),  gives
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(3.337)

This is nothing else than the potential of the charge

 , (3.338)

located on the z-axis at the point 

 . (3.339)

As it has to be, one sees again that one can solve this problem by means of this
image charge. The radial electric field at the sphere’s surface is

. (3.340)

This represents a surface charge

 . (3.341)

By (3.327), this surface charge on its own produces the potential inside the sphere

 . (3.342)

This is exactly the potential given by (3.337), which represents the additional
potential due to the image charge.

3.9 Multi-Conductor Systems

The previous sections illustrated the use of the method of separation of variables to
solve electrostatic problems by means of some examples. Although there are a
number of additional coordinate systems for which this separation is possible, it
has become clear that there are many problems where a solution using this
approach is not possible. 
Analytical methods may not always be used, such as for systems consisting of
many charged conductors with a complicated geometry. Nevertheless, general
statements on arbitrary multi-conductor systems are possible. Fig. 3.23 shows such
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a system with five conductors. We will now analyze a system with n conductors.
They shall carry the charge , and their surface shall have the
potential . Then, the potential becomes

 (3.343)

where  is the distance from a variable point on conductor i to a fixed point on
conductor k. Furthermore, we use the relation

 

or

 .

If we define 

 (3.344)

we may as well write

 . (3.345)

The coefficients  of this linear relation do not depend on the charges, but solely
on the geometry of the conductors. The definition reveals, that they are symmetric
and nonnegative:

 . (3.346)

The fact that  is not immediately obvious from (3.344). However, if we
consider a system of several conductors where only one caries a charge (for
example, the k-th one), then it becomes clear that
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 .

The  are called potential coefficients. We can imagine solving eq. (3.345) for
the charges:

 , (3.347)

where

 . (3.348)

 is the determinant of the coefficients  and  is the minor determinant of
, i.e., the  multiple of the determinant that results from  by

deleting the k-th row and the i-th column. This symmetry transfers from the  to
the , the so-called influence coefficients.

 . (3.349)

Beyond this, they differ from the  by the following properties:

 . (3.350)

This can be seen by the following reasoning. All conductors except for one (for
example, i-th conductor) shall have the potential , while the i-th
conductor shall have the potential . Since the potential in the charge-free
space may not have any maxima or minima (Sect. 3.4), the configuration has to be
qualitatively as illustrated in Fig. 3.24. All lines of force that originate from
conductor i have to terminate at another conductor or extend toward infinity.
However, there may not be any line originating at a conductor with potential 0 and
ending at another conductor with zero potential. 
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The conductor i carries the positive charge . All other charges are negative.
Now, with eq. (3.347) we obtain

i.e.,

as claimed. On the other hand

and therefore as claimed
 .

The overall charge is also positive, that is

therefore

 ,

which proves the last of our claims (3.350), where the coefficients only depend on
the geometry and not on the charge. Written more explicitly:
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or
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(3.351)

where

 . (3.352)

Equation (3.351) establishes a relation between charges and potential differences
(Voltages). The  are therefore called capacitance coefficients. They are a
generalization of the capacitance of a capacitor as defined in Sect. 2.7.

The electrostatic energy of the conductor system can be calculated as follows.
Using eq. (2.173) shows

 ,

which, when using (3.345) and (3.347) yields

 . (3.353)

Another useful theorem, sometimes called the reciprocity theorem, is the
result of  another interesting application of the influence coefficients. Let us
consider two different states of a system consisting of n conductors. The potentials

 shall belong to the charges  and the potentials  shall belong to the charges
. Then we write

 

then

 . (3.354)

The following example shall serve as a simple application. The charge  shall be
distributed on a sphere with arbitrarily small radius. This small sphere shall be
located a distance r away from the center of a larger, grounded sphere of radius
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. What are the influence charges on the large (grounded) sphere? We will
call these influence charges . Let us consider two different states of the two-
conductor system. The first state is just an arbitrary state to be used for comparison
but should be easy to calculate. The second state is the one we would like to solve.

From (3.354), we find

 . (3.355)

This solves the problem. Of course,  is just the image charge, which is known
from  Sect. 2.6, when substituting . For the case where , the problem
becomes trivial. The influence charge then has to  be , because all force
lines have to terminate on the grounded sphere (see Fig. 3.25). This can be
obtained formally because of

 .
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3.10 Plane Electrostatic Problems and the Flux Function

Oftentimes, there are problems that only depend on two Cartesian coordinates, i.e.,
on x and y, but not z. Such planar problems have a number of special properties
which we will discuss in this section.

If the field E is independent of z, then all derivatives of z vanish, i.e., we can
write the strictly formal statement 

(3.356)

applied to E gives

In particular

or
 . (3.357)

We conclude that the component  is of no particular significance. It may assume
any value, but has to be constant in space. An interesting equation comes from the
third component of , namely

 . (3.358)

This equation can be satisfied by means of an arbitrary function  if we define

 . (3.359)

Of course, this should not come as a surprise. It only shows that the electrostatic
field, just as in the general, three-dimensional case, can be obtained from a
potential.

For the charge-free space we also have

 . (3.360)

If we now, by means of an arbitrary scalar function, define
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 , (3.361)

then, eq. (3.360) is obviously satisfied:

 .

This function  is called flux function. Thus, one may calculate the field from the
potential  as well as from the flux function . According to eqs. (3.359) and
(3.361),  and  belong to the same field if

 . (3.362)

These are the Cauchy-Riemann differential equations. We will discuss their
fundamental significance for function theory (complex analysis) in the next
section. The considerable consequences of  and  meeting these conditions will
then become obvious. Prior, we want to mention a few properties of flux functions.
1. Eqs. (3.359) and (3.360) yield for the charge-free space

(3.363)

which we already learned in Section 2.1. Furthermore – and this is new – the 
consequence of eqs. (3.358) and (3.361) is

 . (3.364)

Both,  and  satisfy Laplace’s equation and thus, are harmonic functions.
2.  is constant along a force line. We also calculate

(3.365)

The vector E is therefore perpendicular to the vector . Since  is per-
pendicular to the surface , E has to lie in this plane, which con-
cludes the proof of our claim. On the other hand, E is perpendicular to the 
planes , that is, the planes  and  intersect 
everywhere with a right angle (Fig. 3.26). The surfaces   and 
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 form, for example, in the plane  an orthogonal grid of two 
perpendicular arrays of curves (orthogonal trajectories).

3. The flux function gets is name, among other things, from the fact that it is 
closely related to the electric flux (current) that “flows” between two points in 
the plane (Fig. 3.27). Let the points A and B be connected by some contour. 
The flux passing through this contour per unit length is then

 . (3.366)

Fig. 3.26
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Notice that, except for the factor , the difference between the flux function 
at two different points represents the flux that passes between them (per unit 
length in z direction).
Formally speaking, the flux function was introduced by statement (3.361) to

solve eq. (3.360). This approach is not restricted to plane problems, but applicable
more generally to any problem which is two dimensional by any kind of symmetry.
If one, for instance, takes a cylindrical problem that is rotationally symmetric (i.e.,
independent of the azimuthal angle), then

 , (3.367)

with

 . (3.368)

Furthermore, by (3.32) for cylindrical coordinates we have

 . (3.369)

The Ansatz 

 , (3.370)

satisfies eq. (3.369) for every . Comparison of (3.368) and (3.370) reveals

 . (3.371)

These equations replace (3.362). Despite a great similarity, there is also a
significant difference: Cauchy-Riemann equations emerge only from the plane
case. The consequence is that the function-theoretical methods which we will
discuss in the next section may only be applied to plane problems –  a regrettable
restriction.
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3.11 Analytic Functions and Conformal Mappings

A point in an  plane can be addressed “uniquely” (i.e., unique in both
directions) by a complex number

 .
Notice that z here has no relation to the third Cartesian coordinate, which is anyway
irrelevant for plane problems. The complex number is a two-dimensional quantity,
whose properties are quite similar to those of a two-dimensional vector. This,
therefore, allows to identify z with the vectors  (see Fig. 3.29).

 . (3.372)

In any case, the complex number z and the vector r address the same point. It is
also possible to use Vector Calculus on complex numbers, where those operations
simplify in some sense. The scalar product, for instance,

 , (3.373)

and the vector product, or more precisely, its only component that does not vanish
in the plane case is

 . (3.374)

Now, multiplying two complex numbers,
 

and
 ,

gives

 (3.375)
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z* is the complex conjugate, or simply conjugate of the complex number z
 . (3.376)

Eq. (3.375) states that the product can be interpreted in the following way:
The real part is the scalar product and the imaginary part is the vector product of
the two “vectors”  and .

We may now study any function of complex numbers, i.e., complex
functions, for example,

 ,
or

 ,
etc. Each such function can be split into a real part and an imaginary part, that is,
we can always express it in the following form

 . (3.377)

Differentiating such functions does not always provide a unique result. We start by
defining the differential quotient, as we know it from real functions (Fig. 3.29)

 . (3.378)

The general result will depend on the direction of the vector . In any case, the
definition (3.378) yields

 .
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If 
 ,

then the parameter c defines the direction which we take from point P when
differentiating. This gives

 .

If the two expressions in parenthesis are equal, then

 , (3.379)

which also means that  is independent of c, i.e. the direction. It is important
to realize that eq. (3.379) is necessary for the direction-independence of the
derivative. Eq. (3.379) therefore provides a set of necessary and sufficient
conditions for a function to be uniquely differentiable – the previously mentioned
Cauchy-Riemann differential equations:

 (3.380)

If these conditions are satisfied, then the function  is uniquely differentiable.
The function  is then termed to be an analytic function. It is
furthermore necessary that  and finite. If, for so-called singular points,

 or , then this function is not analytic there. 
For instance, the function  is analytic because
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whereby we have to exclude the origin, a singular point. The function , on the
other hand, is not analytic since
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and

 

Any complex function , whether analytic or not, can be understood as a
mapping of the complex plane z onto the plane f or vice versa. As illustration, we
choose the example

 
where

 

The straight line  in the z-plane corresponds to a curve in the f-plane
(Fig. 3.30), whose parameter representation is

 

Eliminating y, results in the equation for the curve
 .

This is the equation of a parabola that opens to the left and whose focal point is at
the origin. Conversely, the straight line  corresponds to the curve 
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or
 ,

that is now a parabola, which opens to the right and whose focal point is also at the
origin. Collectively, one obtains 2 sets of parabolas. All have their focal points at
the origin, i.e., they are confocal. As a side note, u and v, together with z from a
curvilinear orthogonal coordinate system in which the three-dimensional Laplace
equation can be separated. The “coordinates of this parabolic cylinder” generate
one of the 11 “separable” coordinate systems. The two sets of parabolas intersect
each other at a right angle, which as we shall see, is no accident. This mapping has
a number of peculiar characteristics. Each half of the x-axis transforms into the
positive half of the u-axis; each half of the y-axis transforms into the negative half
of the u-axis. Mapping of only half of the x-y-plane results in a complete coverage
of the u-v-plane. One might imagine the u-v-plane as a result of a distortion of the
x-y-plane in such a way that the negative x-axis is bent over towards the positive
one. 

Conversely, the lines  transform into hyperbolas
 ,

as well as the lines  (Fig. 3.31), where the whole u-v-plane (f-plane) is
mapped onto one half of the x-y-plane. 
A little further on, we will discuss what really happens here (see Sect. 3.12,
Example 5). 
The v-axis ( ) transforms into the pair of lines
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i.e.,

and the u-axis ( ) transforms into the pair of lines
 .

i.e.,
 

or
 .

If the mapping function is analytic, as in the just discussed example, then the
mapping is called conformal. This term shall express an important property of the
thereby created mappings, namely their angle preserving property (magnitude and
sense). In our prove, we will use the fact that every complex number can be written
in the form

 , (3.381)

where

 . (3.382)

Given two complex numbers
 

and
 ,

then their product is
  . (3.383)

Calling r the magnitude and ϕ the argument of a complex number, then the
multiplication of complex numbers is carried out by multiplying their magnitudes
and adding their arguments

 . (3.384)

Consider a point and its neighborhood before and after the conformal mapping as
illustrated in Fig. 3.32. Because the mapping is conformal, i.e., f ’ has the same
value for all directions, it is
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as well as

 

that is
  . (3.385)

This concludes the proof of the angle preserving property. Furthermore, this
clarifies why the two sets of parabolas of Fig. 3.30 and the two sets of hyperbolas
of Fig. 3.31 intersect with a right angle. 

From the angle preserving property it follows that conformal mappings in a
“small scale” are similar, i.e., mapping transforms infinitesimally small figures into
similar ones, whereby the linear dimensions are scaled by a factors  and its
surfaces by a factor . The scale factor can magnify or shrink the result.
Overall, we can say that small squares are mapped into small squares, right angles
remain right angles, and therefore, an orthogonal grid transforms into an
orthogonal grid, as shown in Fig. 3.30 and Fig. 3.31. Despite the likeness in the
small scale, there is no likeness in the large scale, as is also obvious from Fig. 3.30
and Fig. 3.31. Finite figures are not mapped as like figures, but are distorted. 

Real part and imaginary part of an analytic function are harmonic functions.
This is a consequence of the Cauchy-Riemann equations (3.380). Because of 
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 (3.387)

By the coordinate transformation

 (3.388)

in a plane, one can introduce a new coordinate system. These new coordinates are
orthogonal as long as u and v satisfy the Cauchy-Riemann equations. We shall note
without proof, that a consequence of the Cauchy-Riemann equations is, that
Laplace’s equation

(3.389)

transforms into

 , (3.390)

that is, it maintains its form. Obviously, Laplace’s equation is also separable in u
and v as in Cartesian coordinates x and y. This justifies the previous claim that the
plane two-dimensional Laplace equation is separable in any number of coordinate
systems (Sect. 3.5). Every analytic function provides such a system of coordinates.
This is remarkable because the situation in the three-dimensional space is quite
different,  where only 11 coordinate systems are “separable”.

3.12 The Complex Potential

When comparing the statements of the last two sections, one realizes that real part
and imaginary part of an analytic function behave exactly like the potential and
flux function of an electrostatic field. The reader is encouraged to compare eqs.
(3.362) and (3.380), as well as (3.363), (3.364) and (3.386), (3.387). One may
conclude that every analytic function can be regarded in an electrostatic way. Its
real part u can be identified with the potential ϕ and its imaginary part v with the
flux function ψ of the related field. In light of this point of view, the analytic
function w(z) is called complex potential. 

 (3.391)

The accompanying field is
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 . (3.392)

Naturally, with w(z) so is iw(z)  an analytic function. The potential here is

 (3.393)

and the accompanying field is now

 . (3.394)

Thus, multiplication by i results basically in the exchange of potential and flux
function (disregarding the sign). This is also expressed by

 , (3.395)

that is, the fact that  is perpendicular to . This allows to interpret every analytic
function in two ways:

 .

We might as well define a complex electric field
 . (3.396)

Because of , we find

or

and

 . (3.397)

Therefore, singular points of the potential are also singular points of the electric
field. In particular, the electric field is infinitely large at points where the derivative

 is infinite.
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E Ẽ• 0=
E Ẽ
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Every analytic function solves a set of electrostatic problems. The following
shall serve to study a number of such complex potentials. It is easy to establish a
catalog of complex potentials, along with their accompanying fields (which one
may picture as being a result of the conformal mapping of the uniform field), and
then determine from the result which boundary value problems they solve. The
reverse approach, i.e. to start from a boundary value problem and then calculate its
potential, is much more difficult. We will limit ourselves to a small catalog of
interesting mappings.

Example 1:

 .

Using
 .

gives

 .

or

 .

 .

Therefore

 .

 .

The result is that of the straight, uniform line-charge q, which we know already. Its
equipotentials are circles around the line-charge and the field lines spread radially
from it:

 .
i.e.,

 ,

 .

Conversely, one may also start with
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i.e.,

 

which also results in

 

Fig. 3.33 illustrates some properties of the conformal mapping w(z). To
simplify,  was chosen to be zero. Then one gets

 ,

 .

The tetragon ABCD in the w-plane is mapped in the z-plane onto the shape
A’B’C’D’. This shape closes to a full annulus when . If the
difference  increases further, then the annulus may be covered multiple
times. The situation is simpler with respect to u. r tends to infinity ( ) when

dw
dz
------- q

2πε0z
--------------– E– x iEy+= =

 qz*

2πε0zz*
--------------------– q

2πε0
------------– x iy–

x2 y2+
----------------     .= =

Ex
q

2πε0
----------- x

x2 y2+
---------------- q

2πε0
----------- x

r2
-----= =

Ey
q

2πε0
----------- y

x2 y2+
---------------- q

2πε0
----------- y

r2
-----   ,= =

Er Ex ϕcos Ey ϕsin+=

 Ex
x
r
-- Ey

y
r
--+ q

2πε0
----------- x2

r3
----- y2

r3
-----+ 

  q
2πε0
------------ 1

r
--   .= = =

y

x

x

wv

u

Fig. 3.33

z

A B

CD

A’
B’

C

D’

u1u2

v2
v1

v v2=

v v1=

u = u 1

u = u 3 

u = u 2

ϕB

u q
2πε0
------------ r

rB
-----ln–   ,= r

rB
-----

2πε0u
q

---------------  – 
 exp=

v q
2πε0
----------- ϕ–   =

v2 v1– q ε0⁄=
v2 v1–

r ∞→



3.12   The Complex Potential 221

, and  when  . Overall, we find that the u-v-plane covers
the x-y-plane arbitrarily may times. 
Every stripe 

 . (3.398)

produces the entire  x-y-plane. The resulting plane is a connected surface with
infinitely many sheets, and is called a Riemannian surface. These sheets turn, so to
speak, infinitely many times around the origin which is called its branch point
(Fig. 3.34). The mapping is not conformal at this point.

Example 2
 .

Now, we have

from which we find (Fig. 3.35)

Comparison with Example 1 shows that this result is very similar, but just has
potential and flux function exchanged. Fields with such properties are actually
possible. The only thing to do is to implement the equipotentials (these are surfaces
where ϕ is constant) as actual conductor surfaces. 
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This is the field of two line charges, one is positive (+q) at location
( , ) and one is negative (-q) at location , for
which we write:

 .

We use some algebra in order to separate real and imaginary part

where  and   are given by Fig. 3.36. Therefore

and

 .

Fig. 3.35

y

x

w

v

u

z

A B

CD

D’
A’

B

C’

u2u1

v2
v1

u u2=

u u1=

v 1

v 3 

v 2

x d 2⁄= y 0= x d 2⁄–= y, 0=( )

w z( ) q
2πε0
-----------

z d
2
--–

zB
-----------ln– q

2πε0
-----------

z d
2
--+

zB
-----------ln+ q

2πε0
------------

z d
2
--+

z d
2
--–

-----------ln= =

w z( ) q
2πε0
------------

x d
2
-- iy+ +

x d
2
--– iy+

-----------------------ln q
2πε0
-----------

x d
2
--+ 

  2
y2+ iϕ-( )exp⋅ln

x d
2
--– 

  2
y2+ iϕ+( )exp⋅ln–

 
 
 
 
 
 
 

= =

 q
2πε0
------------

x d
2
--+ 

  2
y2+

x d
2
--– 

  2
y2+

--------------------------------ln i q
2πε0
----------- ϕ- ϕ+–( ) ,+=

ϕ+ ϕ-

u q
4πε0
-----------

x d
2
--+ 

  2
y2+

x d
2
--– 

  2
y2+

-------------------------------ln=

v q
2πε0
------------ ϕ- ϕ+–( )=



3.12   The Complex Potential 223

The equipotential surfaces  are circles (Circles of Apollonius ). From 

follows

from which, when using

one derives the equation for a circle whose center is at the x-axis. From 
follows

or

 ,

Fig. 3.36

y

xϕ-
ϕ+

d
2
--– +d

2
--

u ui=

ui
q

4πε0
------------

x d
2
-- + 

  2
y2+

x d
2
-- – 

  2
y2+

---------------------------------ln=

x d
2
-- + 

  2
y2+

x d
2
-- – 

  2
y2+

---------------------------------
4πε0ui

q
---------------- 

 exp Ci= =

x
d 1 Ci+( )
2 1 Ci–( )
----------------------+

2
y2+

d2Ci

1 Ci–( )2
---------------------=

v vi=

1
di
----

2πε0vi
q

----------------tan ϕ- ϕ+–( )tan= =

 
ϕ-tan ϕ+tan–

1 ϕ-tan ϕ+tan⋅+
------------------------------------------

y
x d 2⁄+
------------------- y

x d 2⁄–
------------------–

1 y2

x2 d2

2
-----–

-----------------+
------------------------------------------- yd–

x2 y2 d2

2
-----–+

----------------------------= = =

x2 y
did
2

------- + 
 

2
+ d2

4
----- 1 di

2+( )=



224 Formal Methods of Electrostatics

that is, the equation for a circle whose center is at the y-axis. Both sets of curves
consist of circles (Fig. 3.37). The thereby described field has many applications.
By appropriate choice of the parameters, one can obtain for example, the field of an
eccentric cylindrical capacitor (Fig. 3.38a) or that of a conductor made from two
cylinders (Fig. 3.38b). This resembles the previously discussed problem of
imaging a line charge on a cylinder (Sect. 2.6.3).

Example 4
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If we start from Example 3 and take the limit to a line dipole ( ,
) then one finds

 

This is the complex potential of a line dipole.

,

,

 .

From this one finds the equipotentials to be circles through the origin (centered on
the x-axis) and the flux lines are also circles through the origin (centered on y-axis)
as illustrated in Fig. 3.39, (which may also be regarded as being a result of taking
the limit of Fig. 3.37).
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The lines , i.e.,

characterize special equipotential surfaces ( ), for example, for  and
, this gives

 .

The lines , i.e.,
 ,

are special flux lines ( ), for instance
 .

When using surfaces of conductors, which are a possible implementation of
equipotential surfaces, one obtains fields like those illustrated in Fig. 3.40 (p > 1)
and Fig. 3.41 (p < 1).

For the case of Fig. 3.41 (p < 1), the derivative

 ,

diverges at the origin. Therefore, the electric field becomes infinitely large. This is
a typical characteristic of tips, and is also of great practical significance. Figs. 3.30
and 3.31 are special cases where p = 1/2 and p = 2, respectively.
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Example 6

We may stage conformal mappings. For instance, we want to calculate the field of a
line charge inside a wedge-shaped area, like that of Fig. 3.40. As long as is an
even number multiple of the opening angle, we are able to solve this problem by
multiple imaging steps, as indicated for the for point charges in Figs. 2.34 and 2.35,
where the opening angle is  and .
The imaging method can not be used for arbitrary angles. However, one may
approach this problem as follows. First, by writing

,

one obtains the field of two line charges in the -plane, which differ from
Example 3 only by a shift parallel to the -axis (Fig. 3.42), where the -axis has
to be seen as the equipotential surface (conductor surface) and -q is the image
charge. Now applying the mapping  of Example 5 already solves the problem
(Fig. 3.43):
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where
,

is the location of the line charge in Fig. 3.42 and  its location in Fig. 3.43.

Example 7
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and

 .

This shows us that the equipotentials ( ) are elliptical cylinders and the
flux lines ( ) are hyperbolic cylinders. They are all confocal because for
an ellipse, we have the relation

 .
and the relation for a hyperbola is

 .

Their graph is given in Fig. 3.44. Special cases are, for example, the field between
two opposite edges (Fig. 3.45), or the field of an edge opposite a plane (Fig. 3.46).

Furthermore, the mapping

 

is remarkable because u and v, together with z constitute an orthogonal system in
the three-dimensional space, which allows for the separation of variables for
Laplace’s equation (coordinates of the elliptical cylinder).

Example 8

This rather simple looking mapping exhibits peculiar properties and shall serve
here as an example for many of similar kind.
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If  (u-axis) then

Thus, it has to be either  or . The case   yields

and the case   yields
 ,

which is always the case. This now, results in a peculiar behavior of the u-axis in
the z-plane. The range , (i.e., that part of the negative u-axis), maps to
the negative x-axis. Similarly, for the range , (i.e., that part of the
positive u-axis), maps to the positive x-axis ( ). Both points 
map onto the origin of the z-plane. The section of the u-axis between -B and +B
maps onto the points between -B and +B on the y-axis. For , the image
points on the y-axis move from the origin towards the points +B and -B. For

, the image points on the y-axis move back towards the origin 
Conversely, we find for  (v-axis)

 .

Here, y = 0 is impossible because this would require
 ,

which is not possible since v has to be real. Hence,  and 
 .

i.e.,
 .
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or
 .

Now, the v-axis maps onto the part of the y-axis that lacks the range from -B to +B.
The current conformal mapping is an example of an interesting category of
mappings, the Schwarz-Christoffel mappings.

Fig. 3.48 illustrates this configuration, which is suitable to determine the
fields for a more or less sharp edge (Fig. 3.49).
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4 The Stationary Current Density Field

The following shall discuss the field of the stationary electric currents, or more
precisely, the field generated by the current density g. By certain simplifying
assumptions, we may reduce the current density problems to electrostatic problems
of Chapter 2 and 3.

4.1 The Basic Equations

For electric currents inside metallic conductors to exist, Ohm’s law requires that
there be an electric field present, such that 

 , (4.1)

where  is the specific electric conductivity. It shall be emphasized that this simple
form of Ohm’s law is not always valid. Oftentimes, it has to be replaced by much
more complicated relations. Even if eq. (4.1) is applicable in the given form, 
may still depend on the location, i.e., for some heterogeneous material, or even in a
homogeneous material, if a non-uniform magnetic field is applied, which is a
property that is frequently exploited to measure magnetic fields. This shall not be
our concern here, however. We assume that  is at least piece wise constant.

We have already derived the continuity equation, or the principle of charge
conservation (1.58):

 , (4.2)

which reduces in the stationary case to
 . (4.3)

From (4.1) and (4.2) follows
 .

Letting  be constant and using
 

gives
 ,

or
 . (4.4)

For an arbitrary volume, this results in
 . (4.5)
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This means that for the stationary case, the sum of all currents emerging from the
volume have to vanish. A special case of this is Kirchhoff’s first theorem (Fig. 4.1).

 . (4.6)

This is a fundamental relation in electric circuits theory.
The question whether stationary currents actually exist arises. Based on our

previous knowledge, one might get the impression that they did not. To find the
answer, consider a charged capacitor within which one introduces a conductor
(Fig. 4.2). Initially, there is a field inside the conductor that causes currents. This
represents moving charges, which will cease moving only, when the field inside the
conductor has vanished, that is, when influence charges appear. The current in the
conductor decays. The time for this to occur is the relaxation time and depends on
the conductivity (see Sect. 4.2). Similar considerations lead to decay of currents in
every “electrostatic” situation. Since

 
or

 (4.7)

and therefore
 . (4.8)

In a stationary, closed circuit, this can only be satisfied if 
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 . (4.9)

This is a consequence of the Helmholtz theorem (which will be discussed in
Appendix A.5)
However, to create stationary currents is possible by using an impressed electric
field such as batteries produce. This results in

 , (4.10)

i.e., there must be a voltage source which provides an electromotive force (EMF).
Putting things together gives

 , (4.11)

and therefore
 

i.e.,

 . (4.12)

It is then

 , (4.13)

which may be regarded as the definition for resistance R. R depends on the
geometry and the material, but not on the current. If we separate the resistance into
an external part  and an internal one for the voltage source , then

 . (4.14)

The definition
 , (4.15)

and eq. (4.13) yields 

 . (4.16)

If we do not integrate over the closed circuit, but just the section outside the voltage
source, then we find for 

 . (4.17)

Fig. 4.3,makes it obvious that the actual integration path is irrelevant, since in any
case

 .

Also irrelevant is the choice of the cross section, since the current 
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in the stationary case is the same for every cross section. This simplifies for a
conductor with uniform cross section and uniform current density:

 , (4.18)

which is the familiar formula for the resistance.
This shows that one can create a stationary current density by means of an

EMF. The fact that this is not strictly true for an actual EMF (i.e. after its depletion)
is immaterial. What matters is that it should be possible to maintain the current
density for a time period that is longer than the characteristic times of the system
and the relaxation time in particular, which we will discuss in the next section (the
relaxation time is very short for good conductors).

The unit of resistance in the MKSA system is 1 Ohm ( ):

 . (4.19)

One finds the unit for conductivity from eq. (4.18)

 . (4.20)

Good conductors are metals such as Silver and Copper with values

4.2 Relaxation Time

Charges and their related fields decay in a conductive medium. In the pure
electrostatic case, the final state is one where the inside of the conductor is free of
any field, and all charges are located at its surface. Consequently,  is a function of

 and 
 .

Fig. 4.3
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From

 ,

 ,

and
 ,

follows that

 . (4.21)

This allows for the introduction of the dimensionless time

 , (4.22)

which gives time in units of the so-called relaxation time

 . (4.23)

Thus

 . (4.24)

Trying
 

yields

 

i.e.,
 

and
 

For  this simplifies to 
 

and then
 . (4.25)

Consequently, the charges decay with the relaxation time . Depending on the
material,  may take on a wide range of values. The following examples shall
illustrate this
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good conductor:

poor conductor: distilled water:

Insulator: molten quartz :

4.3 Boundary Conditions

The continuity equation for charges (eq. (4.2)) applied to the boundary between
two media yields a relation between the normal components of g and the surface
charge (Fig. 4.4). Integrating this equation over a small slice of the volume (i.e., an
area) gives

 ,

or when cancelling the dA

  . (4.26)

It was assumed here that there is no surface current, which means that all
conductivities are finite. 

The relation for the stationary case is 

 ,

and therefore the boundary condition for g
  . (4.27)

Notice that this does not require for  to be zero and, as we shall see soon,
sometimes this has to be different from zero. A consequence of (4.27) is that

 (4.28)

Furthermore, it is necessary that
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  . (4.29)

Putting the two together yields the law of refraction for g and E lines (Fig. 4.5):

 

or

  . (4.30)

On the other hand, eq. (2.120) with a surface charge on the boundary between the
two media 1 and 2, and letting  gives

 . (4.31)

The two eqs eq. (4.30) and eq. (4.31) are compatible only, if

 

that is, if

 

(4.32)

This is a rather peculiar result. It says that a stationary condition without
surface charges on the boundary, can only occur if both relaxation times are
identical. Conversely, if , then the stationary condition is reached only after

 reaches the value mandated by eq. (4.32) (if it was initially different from that).
The time it takes to reach equilibrium depends on the geometry of the set-up and
the quantities , and . The law of refraction (4.30) does not apply before
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the equilibrium is reached. During the transition, eq. (4.31) and the actual values of
 have to be used. As an illustrative example, consider that at , a voltage is

abruptly applied to a layered resistor, extending to infinity (Fig. 4.6). For  this
voltage is constant. The initial surface charge shall be  The following
three formulas apply:

(4.33)

  (4.34)

  . (4.35)

The first two equations yield  and 

  . (4.36)

Substituting this in eq. (4.35) results in the differential equation

  , (4.37)

where

  , (4.38)

with the solution

  . (4.39)
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After a very long time, this becomes

   .

By (4.36), the related electric fields are 

  , (4.40)

and the related current density is

  (4.41)

and

(4.42)

which is illustrated in Fig. 4.7.
The stationary state described by eqs. (4.27), (4.30), and (4.32), is reached only
after the typical time  when the relaxation process has subsided. A circuit of
capacitors and resistors as shown in Fig. 4.8 allows one to simulate this transition.
If A is the cross sectional area (assumed to be very large) between the layered
resistors (or layered capacitor) of Fig. 4.6, then one can write

  . (4.43)
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Calculating the circuit of Fig. 4.8 leads to the same results as the field-theoretical
derivation. Without going into the details, let it be noted that the relaxation time
results in the expression

 . (4.44)

which is again eq. (4.38).

An important special case of the law of refraction (4.30) results from 

 ,

which occurs when  while  remains finite. This forces  and
the g-lines become perpendicular to the surface (Fig. 4.9). Conversely, if 
then the g-lines become parallel to the boundary (Fig. 4.10). Thus, the boundary to
a conductor with infinite conductivity is an equipotential surface, i.e., 

 (4.45)

Conversely, the boundary towards an insulator is characterized by

 . (4.46)
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4.4 The formal analogy between D and g 

We have learned that

Furthermore 

One concludes that there is complete formal analogy between electrostatic fields D,
on one hand, and the stationary current density fields g, on the other hand. This is
an important observation because it allows to apply most of the results from
Chapters 2 and 3 to current density fields. This is particularly true for the formal
methods developed in Chapter 3, which may now be directly reused to solve
boundary value problems of current density fields by separation or conformal
mapping. Based on eqs. (4.45) and (4.46), there is a twofold application of these
results. First, we obtain a Dirichlet problem when conductors are confined by ideal
conductors. Second, for conductors that are terminated by ideal non-conductors
(insulators), we obtain a Neumann problem. Of course, a combination of the two
gives a mixed boundary value problem.

 .

In the charge-free space In the stationary case

therefore in a uniform space we have

 .

The normal components at the boundary are then

, 

while because of , the tangential components are

 .

This results in the law of refraction

 .
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4.5 Some Current Density Fields

4.5.1 Point-like Current Source in Space

A current density emerging from a point-like source inside an infinitely large,
uniform medium is illustrated in Fig. 4.11. 
For symmetry reasons it must be

that is

(4.47)

and 

 . (4.48)

All other components of g and E vanish. Of course, the assumption of spherical
symmetry is an idealization because of the current supply. For the potential, we get

 . (4.49)

The image method allows to analyze the case of a point-like source in a volume
that consists of two half spaces, where each of which has a different conductivity
(Fig. 4.12). 
We might try to solve this for region 1 by considering the (real) source I and the
image source I’ in  region 2, while the solution for region 2 uses the image source
I’’ located in region 1. One writes:

 ,

 .

Fig. 4.11
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Notice that this formula is a complete analogue to Sect. 2.11.2. We therefore find
by just replacing  by 

 , (4.50)

 , (4.51)

The current density fields correspond to the figures of the electric field of Sect.
2.11.2. Two limits are most important. For an insulator  in region 2 we have:

 .

This case is illustrated in Fig. 4.13. Conversely, Fig. 4.14 shows the case when
region 2 is filled with a perfect conductor.   results in

 . 

Fig. 4.13 represents a Neumann boundary condition  and Fig. 4.14 the
Dirichlet boundary condition 

Using these results allows to solve an abundance of problems by
superposition of appropriate sources. For instance, Fig. 4.15 suggests how to solve
the problem of a point source in a quadrant where the boundary on one side
consists of a perfect conductor, while the other side borders a perfect insulator.
Conversely, if both media are perfect conductors, then Fig. 4.16 suggests a solution
path. 

By taking a limit one may transition to a dipole source and, for instance, solve
the problem of a sphere embedded in some uniform medium of different
conductivity, by superposition of dipole current density and uniform current
density (this is analog to Section 2.12).
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Fig. 4.13
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4.5.2 Line Sources

Basically, all that was said for line charges applies to line sources as well. If r is the
perpendicular distance to a uniform line source   in the infinite space, then

 , (4.52)

 , (4.53)

and

 , (4.54)
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Furthermore, we may apply all examples of Section 4.5.1 to line sources by
substituting I by I/l in Figs. 4.12 through 4.16. This also holds for the two eqs.
(4.50) and (4.51).

The solutions resulting thereof can be used as a starting point to solve
additional plane problems by conformal mapping. For instance, the field shown in
Fig. 4.18 results from Fig. 4.17 by the conformal mapping  (similar  to
Example 6 of Sect. 3.12).

4.5.3 Mixed Boundary Value Problem

To demonstrate the separation of variable method, we choose for simplicity reasons
a plane and, mixed boundary value problem for Laplace’s equation  .
Consider the rectangular piece of a uniform conductor with the sides a and b where
a voltage is applied as shown in Fig. 4.19. The two sides  and  are
coated with a very good conductor (like silver) and are grounded. The side 
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shall also be coated with silver but the potential there shall be . There is no
conducting material at the side  and therefore, the current density lines have
to be parallel to that boundary, which means that . We summarize the
boundary conditions:

  . (4.55)

In order to meet the boundary conditions for y, the y-dependent part is written as
 .

This determines the form of the x-dependency, since the problem is independent of
z.

 .
One needs to let  in order to satisfy the condition  for . For

, this results in the requirement 

i.e.,
 

or

 .

Furthermore, letting , satisfies  for . Then

  . (4.56)

There is potentially an additional term  stemming from the case
. However, it vanishes because of the boundary conditions. Obviously

eq. (4.56) satisfies all boundary conditions, except that at . This needs to be
taken care of. One has to find the coefficients  in such a way that

  . (4.57)

Using the usual trick, one multiplies this equation by  and integrates y
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 .

With the orthogonality relation (3.76) one obtains

 .

Integrating the right side gives

 .

This makes

 (4.58)

i.e.,

 (4.59)

and with (4.56), the solution is finally

  . (4.60)

The problem may also be interpreted as a boundary value problem for , because
  (4.61)

applies to  as well. However the boundary conditions are different from those for
 in (4.55). Now one has the situation as illustrated in Fig. 4.20. 
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The factor  in front of the δ-function is due to the behavior of the potential
along . If we view this potential as a function of y, then

 

This implies that there is a discontinuity by  at both locations,  and
 

The Ansatz

  (4.63)

satisfies the first three conditions of eq. (4.62), but not the last one. This requires

 ,

from which one gets

  . (4.64)

And finally

  . (4.65)

The two results (4.60) and (4.65) are equivalent, and enable one to find the field.
Both  and  have to satisfy the Cauchy-Riemann condition:
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which is the case. Of course, one could have used this relation to calculate ,
which would have been easier than solving the boundary value problem again.

Knowing  and  allows to write the complex potential of the field:
 .

Because of

 ,

we re-write w(z)

 .

which gives

 . (4.66)

This represents the conformal mapping which solves this particular problem. 
The current density function allows to calculate the resistance of the setup or

rather its inverse the conductance:
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 .

And then for the conductance

 . (4.67)

The Conductance becomes infinitely large, which is a consequence of the idealized
assumptions. The potential is discontinuous at the corners ,  and

, respectively. This is the reason why there, the electric field is infinitely
large, as we have seen from the boundary conditions (4.62). Furthermore, the
current density, and even the integrated total current becomes infinite, i.e., 
and  are not finite. The singularity can be eliminated if we remove small
pieces from the corners, while following a current density line (Fig. 4.21).

Notice that in solving this problem, one may consider a number of other
problems as well.Fig. 4.22 shows a larger picture of the field. Fig. 4.22 allows a
number of different interpretations. For instance, one may pick the range from

 through  as shown in Fig. 4.23 and regard it as the solution
of a different boundary value problem. Fig. 4.24 shows the solution when taking
only the range form 0 through b/2. Furthermore, one can find a new meaning by
exchanging the roles of  and . For instance, this transforms Fig. 4.23 into a
point like current source, injected at  and , while the current is
drained off on the three sides  and , while the side with 
borders an insulator (disregarding the point like source), illustrated in Fig. 4.25.
Calculating the resistance in this case, one finds that it diverges. The reason is the
singularity of the  current injection at   and . We have discussed this
situation already in conjunction with the diverging conductance of eq. (4.67). In the
present interpretation, the current remains finite, while the quantity which we
interpret as being the potential  diverges. Finite current when voltage is
infinite means that resistance has to be infinite. As before, this divergence is of
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formal nature and can only be eliminated by removing a small piece along a line
 (which here is represented by an equipotential line), as shown in

Fig. 4.21. 
When using the term “equipotential line”, it has to be understood that this means
the intersection of the equipotential surfaces with the observed plane. This is
permissible in case of plane problems because the equipotential lines uniquely
characterize the equipotential surfaces. 

Fig. 4.22  

ϕ ϕ0=

ϕ ϕ0–=

ϕ ϕ0–=

ψ const=
ϕ const=

b
2
--–

b
2
--

0

b–

b

3b
2

------

2b
y

x

ψ const.=



254 The Stationary Current Density Field

Fig. 4.23
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Fig. 4.25  
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5 Basics of Magnetostatics

5.1 Basic Equations

Maxwell’s equations were introduced in Chapter 1 eq. (1.72). In the limit of just
time-independent problems, the system of Maxwell’s equations nicely splits into
two electrostatic and two magnetostatic equations. The latter consists of Ampere’s
law, and the fact that the magnetic field is always source free (i.e. solenoidal).

(5.1)

 . (5.2)

Beyond that, we have to establish a relation between B and H
 . (5.3)

The relation for vacuum is
 . (5.4)

The B-field is perceivable because it exhibits a velocity dependent force on
charged particles (Lorentz force). If an electric field exists simultaneously, the force
becomes

 . (5.5)

Integrating eq. (5.1) over an arbitrary area gives its integral representation
 .

Applying Stokes’s theorem gives
 , (5.6)

where I is the current through the respective area.
In the following, we calculate the magnetic fields for a variety of

arrangements. Simple cases with a high degree of symmetry allow one to almost
directly write down the magnetic fields from eq. (5.6). However, frequently more
laborious, formal methods need to be applied. This requires the introduction of the
vector potential A. Since the divergence of the curl vanishes for every vector

 ,
it is possible to write B in the form

 . (5.7)

This automatically satisfies eq. (5.2). Any given A uniquely determines B.
Conversely, there are many vector potentials for any given B-field. Obviously,

and (5.8)

produce the same B-field. The reason is 
 ,

where for any function  the following identity holds

 H∇× g =

 B∇• 0 =

B B H( )=

B µ0H=

F Q E v B×+( )=

H∇×( ) Ad
A∫ g Ad

A∫=

  H ds•∫° I  =

a∇×( )∇• 0=

 B A ∇×=

A A' A φ∇+=

A'∇× A∇× φ∇( )∇×+ A∇×= =
φ
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 .
Consequently, every B-field can be represented by an infinite number of vector
potentials A. This allows one to impose additional restrictions on A. The proper
choice of  satisfies these restrictions, which can be used as a gauge. The
transition from  to  in eq. (5.8) is termed a gauge transformation of the vector
potential. B remains unchanged and, thus, is said to be gauge invariant. The so-
called Coulomb gauge is very useful for static problems.

 . (5.9)

For time-dependent problems, the Lorentz gauge is usually used

 . (5.10)

Its importance will be made clear later.
From eqs. (5.1), (5.4). and (5.7) follows, that for currents in vacuum 

 .

Using the vector identity
(5.11)

and eq. (5.9) gives
 . (5.12)

For Cartesian coordinates we find

 , (5.13)

where  represents the ordinary Laplacian or Laplace operator

The reader shall be cautioned in applying the Laplace operator to vec-
tors, since only for Cartesian coordinates the result is simply an applica-
tion of the double derivative to the individual components. This can 
easily be verified by applying the gradient, divergence, and curl in cur-
vilinear coordinates (as we have discussed in Sections 3.1 through 3.3), 
and use eq. (5.11) to calculate , i.e.,

 .
It is recommended to eliminate  in this way when using curvilinear 
coordinates.
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 .

The equation in cylindrical coordinates is

 , (5.14)

where again  represents the ordinary Laplace operator, whose form is given by
eq. (3.33):

Now we see that it would be wrong to attempt splitting eq. (5.12) in its cylindrical
components and write it in the form

 FALSE!

The reason for all this lies in the fact that the basis vectors for curvilinear
coordinates are functions of the location, for instance in cylindrical coordinates 
and  (not , however), which results in additional terms when differentiating.
In Cartesian coordinates we have

 ,

while for cylindrical coordinates we get
 ,

where
 .

To calculate the related fields when the currents g(r) are given, requires one
to solve eq. (5.12), which in Cartesian coordinates is represented by the three scalar
equations of (5.13), and for cylindrical coordinates by the three scalar equations
given by (5.14). For formal reasons, we will initially restrict ourselves to Cartesian
coordinates. We know already the solution of the three equations (5.13). These are
three scalar Poisson equations. We have shown in electrostatics that the equation
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can be solved by the potential (see eq. (2.20))

.

Similarly, from eq. (5.13) follows:

 . (5.15)

Of course we may combine these three equations into one vector equation

 . (5.16)

However, important to remember is that this equation is valid only in Cartesian
coordinates.

What remains to be proven is that the vector potential eq. (5.16) is indeed
source-free, as our gauge (5.9) requires. We find

 ,

having used the vector identity

and the fact that g(r’) is independent of the field point r. Furthermore

,

because for stationary currents
 .

And finally, because of Gauss’ theorem

.

The reason is that the integral covers the entire space and there will be no currents
crossing a sufficiently distant surface. Note that we use da for the surface element
here and whenever confusion with the vector potential A is possible.
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One needs to beware of a false conclusion, here. We already saw that
 when . However, this does not mandate that we select the

Coulomb gauge when dealing with magnetostatic problems, where we have, of
course, . It only means that our approach does not bear any contradiction.
Our assumption was the Coulomb gauge ( ). Any different result would
constitute a contradiction. On the other hand, if we choose current densities that are
not source free ( ), then we end up with a contradiction. Since always

 ,

the following must also be true 

 

 Therefore, it should not be a surprise that for , we obtain a wrong vector
potential 

 .
When choosing a different gauge, then the vector potential calculated for a given
current distribution satisfies this other gauge if and only if . 

In principle, this solves the calculation of magnetic fields due to any current
distribution. In an actual case, this may still turn out to be difficult.

Instead of the vector potential, the field may be directly expressed by an
integral. From eqs. (5.16) and (5.7) we obtain

 ,

or

 .

We use

 

and therefore

 . (5.17)

This is the so-called Biot-Savart’s law in its most general form. If there are only
currents in relatively narrow conductors we may approximate (Fig. 5.1) 

 .
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This changes eqs. (5.16) and (5.17) to now read

 , (5.18)

 . (5.19)

These integrals extend over the entire, closed current loop or all the closed current
loops (Fig. 5.2). Frequently, it is said that the line element  creates the field

 . (5.20)

Often, this is also called the Biot-Savart law. Unfortunately, this form is
mistakable, we might almost say even wrong. Indeed, the field expressed by
eq. (5.20) is a possible field, as it is source free. The related current density field is
obtained from 

 .
Taking the divergence on both sides reveals that it is always source free:

 .
However, the current I in the line element  is not source free. This constitutes an
apparent contradiction. Nevertheless, the correct current density field can be
calculated immediately. To simplify and make this easier to understand, just
assume that the line element  is located at the origin and is oriented along the
positive z-axis. When using spherical coordinates, dB and dH have only a ϕ-
component
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 .

This makes

 

We know the electrostatic analogue of this field very well. It represents the dipole
field given by eq. (2.63). Thus, it describes the current I within a line element with
the point-like isotropic current sources +I at its upper end and -I at its lower end,
that is, a “dipole current density” which occupies the entire space. It is rotationally
symmetric. Therefore, by using Ampere’s law, one can show that this flux exactly
causes the given magnetic field. It is furthermore apparent that all positive and
negative point sources cancel each other when integrating over a closed contour,
thereby leaving only the current I in the closed conductor. This explanation
plausibly clarifies the integral result (5.19), which we had obtained in a purely
formal manner. 

To go beyond the current magnetostatic treatment of this problem and to
regard it as time dependent problem is also possible. Currents with sources are now
permissible, which however, requires time dependent volume charges, because of
the charge conservation (continuity equation). Besides the magnetic field, one
needs to consider also time dependent electric fields and thereby displacement
current densities, i.e., the current densities above are replaced by displacement
current densities. We will not elaborate on this subject here.

To use the Biot-Savart law in its integral form (5.19) is advisable in
magnetostatics. Nevertheless, the differential form can be used as well, if
interpreted in the correct way, as just outlined. 

Oftentimes, the vector potential is very useful to calculate the magnetic flux.
Because of

,

and using Stokes’ theorem we obtain:
 . (5.21)

The vector potential was introduced as an auxiliary quantity to calculate B. At
this point it is frequently said that only B has real meaning, while A has no
significance beyond its role as an auxiliary quantity. This is not correct because in
quantum mechanics, the field A is necessary and is a real field. The experiment by
Bohm and Aharonov, interpreted in a quantum mechanical way shows for example,
that the A field is important in certain regions (e.g., outside of infinitely long coils,
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see Section 5.2.3), where even when , the A field remains . The
Bohm-Aharonov experiment shall not be discussed here. Details can be found in
Appendix A.3.

Besides the vector potential, there is also a scalar magnetic potential, whose
usefulness is restricted to describe magnetic fields in regions that are current free.
If in a region , then

.
Therefore, H can be obtained from a scalar potential  by taking the gradient (note
that  here is not related to the previously discussed flux function).

(5.22)

 is a unique function in a simply connected region and shares most
properties with the electric potential . When multiply connected regions enclose
currents,  becomes ambiguous (Fig. 5.3). Consider a current carrying toroidal
region. We pick the two points A and B in the current-free space and the two
different paths C0 and C1, both starting at A and ending at B. Together C0 and C1
enclose the current carrying region. Ampere’s law (5.6) states

 ,

that is

 .

More generally, we could be interested in a path that loops n times around the
current I (Fig. 5.4). Then we get

 . (5.23)
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If one defines the scalar potential

 , (5.24)

then  is determined but for whole number multiples of I. However, one can make
 unique by introducing a cut in the space, so that a simply connected region

emerges (Fig. 5.5). This cut represents a separating surface through which no
integration path may go. By Ampere’s law, along all permissible integration paths,
this gives

.

This makes  unique. The scalar potential is important because it allows one to
reduce many magnetostatic problems to problems whose solution is already known
from electrostatics. The formal analogue between magnetostatics and electrostatics
will be highlighted even more below. Specifically, Laplace’s equation now applies:

.
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 . (5.25)

Therefore, the formal methods (separation, conformal mapping) which we have
discussed in detail in conjunction with electrostatics, are also of great consequence
in magnetostatics. 

5.2 Some Magnetic Fields

5.2.1 The Field of a Straight, Concentrated Current

Consider a current flowing along the z-axis of a Cartesian coordinate system, as
shown in Fig. 5.6. Currents in magnetostatics are always source free. In this
section, this is initially not the case. However, intuitively one can imagine the
current to somehow form a closed loop at infinity, which would not provide any
contributions to the magnetic field. To illustrate the methodology of the previous
section, we will calculate the related magnetic field in three different ways: using
the vector potential, by Biot-Savart’s law, and by Ampere’s law. The current
density is

 (5.26)

First, we start with the vector potential. With (5.15) follows
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The current along the z-axis could, for instance, be part of a circuit that includes the
z-axis from  to . However, the current can as well flow from  to

. In any case, one needs to calculate the integral

.

Substituting  gives

Taking the limit ,  gives

 .

Now, for arbitrary values of  and , one obtains for the vector potential

 .

Except for a very large, yet insignificant constant, the vector potential for the case
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 , (5.27)

and for the magnetic field:

. (5.28)

The second method of solution is by means of the Biot-Savart law eq. (5.17). Here
one starts with

 .
The magnetic field is

 

Finally, as before one obtains

 .

In a similar way, calculating  leads to the previously obtained result.
One may also use cylindrical coordinates to calculate the field components
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and

Here, the components of the magnetic field are:

  . (5.29)

Thus, the magnetic field B has only an azimuthal component, which has already
been used in Chapter 1. Thirdly, one can now calculate the field for this problem
again using Ampere’s law. We already know based on the rotational symmetry, that
there is only an azimuthal component (Fig. 5.7).
Then,  can not depend on , which means that it has to be:

i.e.,

and as already proven

 .

Using

and (5.24), one may describe the field by means of a scalar potential

 . (5.30)
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This shows that the half-planes that originate at the z-axis and for which
 are equipotential surfaces. Conversely, from these equipotentials we

find

 .

If one chooses a Cartesian coordinate system, such that 

 ,

then

 , (5.31)

from which one finds the magnetic field:

One might also write  in the form

 . (5.32)

Notice that this tells us that  is constant on concentric circles ( )
surrounding the current. These circles also represent the field lines. They are
perpendicular to the equipotential surfaces ( ). This allows one to view

 as the flux function. The lines  and the lines  generate
an orthogonal grid, parallel to the x-y plane. This is no coincidence, but a property
of all “plane fields” and justifies the introduction of the complex potential, as well
as the use of conformal mapping, similarly as we did for the electrostatic case. If
one defines

 , (5.33)

then for the current case, one obtains 

 . (5.34)
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Conversely, we could have introduced  as the real and  as the imaginary
part of the complex potential.

The analogy between the complex potential (5.34) and the electric line
charges (Sect. 3.12, Example 1) is obvious. However, notice that equipotential
surfaces and field lines exchange their roles. 

Of course, the fields of multiple currents can be superposed. For instance,
consider the task to find the field of a current  parallel to the z-axis, when 
passes through the x-y plane at ,  and a second current , also
parallel to the z-axis, when  passes through the x-y plane at , 
(see Fig. 5.8). Then, by (5.28)

 .

As before in electrostatics, it is useful to find the stagnation points of the field, i.e.,
the points where

 .

This scenario is independent of z. There is not only a stagnation point, but a whole
“stagnation line” which consists entirely of stagnation points. Its coordinates are
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If the currents have the same sign, then the stagnation point lies between the
currents. For currents of opposite sign, it lies to the right or left of both currents
(Fig. 5.9). The field is identical to that of two line charges, where again the field
lines and the equipotentials exchange their role. The magnetic field lines in Fig. 5.9
correspond to the electric equipotentials of the line charges.  is constant along
the magnetic field lines, i.e.,  may be regarded as flux function:

 .

This produces the complex potential

 .

This result is the same as we would expect from superposing two potentials of the
type (5.34), after shifting their center by , .

5.2.2 Field of a Rotationally Symmetric Current Distribution in Cylin-
drical Conductors

Consider a cylindrical conductor as shown in Fig. 5.10, with the current density
 .

This produces a magnetic field that has only an azimuthal component which only
depends on r. With Ampere’s law one obtains (inside)
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 (5.35)

and for the field outside 

 . (5.36)

I(r) is the current flowing inside a cylinder of radius r. For a uniform current
density inside the conductor one gets

(5.37)

and for

 . (5.38)

The field inside the conductor increases linearly with the radius and it falls outside
as  (see Fig. 5.11).

5.2.3 The Field of a simple Coil

The field of an infinitely long and ideal, densely wound coil (or solenoid) can
easily be calculated using Ampere’s law. Convince yourself that the field has to be
parallel to the coil’s axis and independent of both z and ϕ, i.e., only  does not
vanish. The integral over the closed path of Fig. 5.12 is zero, i.e.,

 .

The field outside the solenoid has to be constant, i.e., independent of the radius.
The same is true for the inside field when integrating along . The inside field

 is independent of r. This requires that the outside field  vanishes all
together. The reasons is that  has to vanish for . Finally, integrating
along the closed loop  gives. 
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 ,

where n represents the number of turns per unit length and I is the current per turn.
Then

 , (5.39)

The vector potential only has an azimuthal component , which is easily
calculated from (5.21)

 .

The flux inside the solenoid along a circular loop of radius r is

and therefore

 .

Outside the solenoid one has 

and 

 .

The radial dependency of  and  is shown in Fig. 5.13.
Notice that although  outside the solenoid, still  is not zero. We

have already mentioned that the outside field is significant and for example, has to
be considered in Quantum Mechanics (see Appendix A.3).
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The field of densely wound toroidal coils, as shown in Fig. 5.14, is also easy
to write. The field for a circular, concentric path inside the coil is

 ,

or

 , (5.40)
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where N is the total number of turns and I the current in one turn. All fields outside
the coil vanish if we make the idealized assumption that there is no current flows
along the coil in azimuthal direction. Fig. 5.15 illustrates the field as a function of r.
Note that all this does not depend on the shape of the coil’s cross-sectional area.

5.2.4 The Field of a Circular Current and a Magnetic Dipole

Let an azimuthal current I flow in a circular loop as illustrated in Fig. 5.16.
The loop is situated in the x-y plane. Its current density is

 . (5.41)

Cartesian coordinates allow the use of eq. (5.15) to calculate the vector potential.

 (5.42)

Then, using eq. (5.15) gives

 

Similarly the y-component becomes
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Returning to the components in cylindrical coordinates using the relation
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 , (5.43)

 . (5.44)

One might as well integrate from  through .  vanishes because of the odd
integrand,  does not, however. We will, once again, demonstrate the necessity of
starting from Cartesian coordinates when using eq. (5.15). Had we tried to
calculate  and  directly from (5.15), the result would not have been (5.44),
but an incorrect one. This would have been the integral without the factor

 in the numerator of the integrand. To find an analytic solution for 
of (5.44) is not possible. However, the integral is related to the total elliptic
integrals. To see this, one has to resort to some mathematical tricks. First, we
introduce the variable
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 .

These two integrals are called the total elliptic integrals of the first and the second
kind, respectively:

 , (5.46)

 . (5.47)

These enable one to write  in the following way:

 . (5.48)

In order to calculate , one needs to know the derivatives of K and E.

 (5.49)

We will limit ourselves to the case where the distance from the origin to the field
point is much larger than :
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 . (5.50)

The correctness of the given terms of the two series can be proven by expanding
the integrands of (5.46) and (5.47) into a series and then integrate them term by
term. Using (5.50) in (5.48) for small values of k gives 

i.e.,

Introducing spherical coordinates  (Fig. 5.17):
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gives

Now, we introduce the magnetic dipole moment m
 (5.51)

and its vector representation
 , (5.52)

where the direction of the current and the direction of the area element are
determined by a right handed system. This gives

(5.53)

and 

(5.54)

Unfortunately, the definition of m is not standardized and is oftentimes
introduced without the factor . The field components in eq. (5.54) behave as
functions of the location in the same manner as those of the electric dipole field
(2.63). These two equations merge when exchanging  with m. The name
magnetic dipole is based on this analogy.

Just like the ideal electric dipole, the magnetic dipole has to be understood as
the limit of an infinite current I while  becomes infinitely small, leaving the
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product  finite. The area is not necessarily circular. In the limit of a
vanishing area, its shape is immaterial for the field. What matters is the size of the
area, which the definitions (5.51) and (5.52) already consider (Fig. 5.18).

A scalar potential was suitable to determine the field of an electric dipole
(2.60). This is also the case for the magnetic dipole, for which we have

 , (5.55)

with the quantities as shown in Fig. 5.19. When comparing (5.54) and (5.55), be
aware that  and . The scalar potential  is given in a form
which is independent from a coordinate system. The vector potential (5.53) can
also be written in a representation that is independent of a coordinate system:

 , (5.56)

where we used the vector identity:
 .

Using  and  in (5.56), we find  as of (5.53). The field
produced by the current in a circular loop around a finite area is shown in Fig. 5.20.
At a sufficiently large distance, it is indistinguishable from the field of two
opposite charges of the same magnitude. The magnetic field of an ideal magnetic
dipole corresponds entirely to the electric field of an ideal electric dipole (see
Fig. 2.15).

The magnetic dipole is one of the most important concepts in magnetostatics.
It will be the center piece of several of the following sections. Therefore, we will
summarize the most important formulas, side by side with the electrostatic ones.
Consider a dipole, oriented in the positive z-direction, located at the origin of a
coordinate system. Then for spherical coordinates we have the following relations: 
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Independent of any coordinate system, for a dipole (p or m) at location  we have
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Anticipating the outcome of the ensuing discussion, we will give the result for a
uniform dipole layer

5.2.5 The Field of an Arbitrary Current Loop

An arbitrarily shaped current loop as illustrated in Fig. 5.21 can be thought of as
being composed of many dipoles. If the currents in all loops are identical (I), then
they cancel on the inside, even for infinitesimal sections. What remains is the
current I on the boundary. Therefore, the current loop is equivalent to a magnetic
dipole layer, i.e., a layer of magnetic dipoles (in analogy to the electric dipole layer
of Sect. 2.5.3). The area density of the dipole moment is

, (5.57)

i.e., a constant. This means that the dipole layer is uniform. In analogy to eq. (2.72)
we obtain therefore

 , (5.58)

where  is the solid angle subtending the current loop as seen from the
observation point. By eq. (2.73), the potential  has a discontinuity of  when
passing through the electric dipole layer in the positive direction. Similarly,  has
a discontinuity of I, when passing through a magnetic dipole layer in the positive
direction. We have seen this result previously in a different form (refer to the

electric magnetic
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discussion on the scalar magnetic potential  of Sect. 5.1. The separating surface
introduced then, now turns out to be a magnetic dipole layer).

Despite the perfect formal analogues, there is a major difference between
electric and magnetic dipole layers. Electric dipole layers are a physical reality. By
contrast, the magnetic dipole layer is a purely formal-fictitious construct and a
substitute for finite current loops. This is obvious from the fact that they may be
placed more or less arbitrarily since only the boundary matters (Fig. 5.22). The
boundary defines the field in a unique way because the solid angle  does not
depend on the choice of the separating surface. Positive and negative solid angles

mutually cancel. Notice that  has the same sign as .
Cylindrical dipole layers result when the currents only flow in z-direction

(this is the analogue of cylindrical electric dipole layers, see Sect. 2.5.4). Fig. 5.23
allows to determine the angle , which in analogy to eq. (2.85) gives

 . (5.59)

The same result follows from eq. (5.58) because for the situation of Fig. 5.23 we
have

 . (5.60)

The fields of cylindric dipole layers are plane, i.e., the fields are independent of z. 
Let us calculate the field on the axis of a circular current loop (shown in

Fig. 5.24) as an example on how to apply eq. (5.58). The solid angle  needed
here, can be taken from the example of Sect. 2.5.3.

 .

Then 
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and the field on the axis becomes

 . (5.61)

Of course, this result can also be derived from  (5.48). The relations for r and k
close to the axis are  and . Therefore

 

and

 .

as before. In particular, the field at the center of the circle ,  is

 . (5.62)

5.2.6 The Field of a Conducting Loop in its Plane

The magnetic field in the plane of a plane conducting loop is a simple but useful
application of Biot-Savart’s law (Fig. 5.25). From 

 

it follows that B is perpendicular to the plane of the loop (= paper plane in
Fig. 5.25). From a magnitude perspective, we have
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 .
Therefore, the magnitude of B is

 , (5.63)

where
 .

If, for example, the loop consists of pieces of straight wire that form a polygon,
then we need to add the contribution of each piece. When using

 ,

the individual sections yield the following contribution (Fig. 5.26).

 

Finally:

 . (5.64)
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If the conductor is infinitely long, then 

and in accord with our previous result

 .

The field at the center of a regular n-polygon (n sides) with the inside radius  is

 .

For , this becomes

 .

This is the same result as for a circle, which we already know: eq. (5.62) with
. It is also possible to write this result immediately:

 .

5.3 Magnetization

Several times already, we came to the conclusion that based on our current
knowledge there are no “magnetic charges”, which is the reason why B is source-
free or solenoidal:

 .
However, for convenience we will introduce the formal concept of fictitious
magnetic charges. The reason is that it will simplify certain problems.
Nevertheless, the physical source of static magnetic fields is always found in
currents, i.e., moving electric charges (disregarding the spin of particles). We have
already found that all such fields can be thought of as being created by
superposition of suitable dipole fields. The spin of elementary particles causes a
magnetic moment, which has no explanation in classical physics. Consequently, we
can say that all static magnetic fields are ultimately caused by magnetic dipoles.
Magnetic dipoles are also fundamental in connection with the question about
interaction between matter and magnetic fields. We will need to discuss this too. In
doing so, we will again find a formal, broad analogy between electric and magnetic
effects (see Sect. 5.5). First, we will deal with the field of a volume distribution of
magnetic dipoles. It is convenient to define the magnetization as

 . (5.65)
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This represents the magnetic analogue to the electrostatic polarization P. Based on
eq. (5.56), one concludes that a volume distribution of dipoles with the density

 creates the vector potential 

 . (5.66)

Written in a sightly different form gives

 , (5.67)

where the grad operator now operates on r’, which causes the sign change versus
(5.56). Then we use the vector theorem

 ,
which results in

 .

The first of the two integrals can be further modified by applying the integral
theorem

 , (5.68)

which is a variant of Gauss’ theorem
 .

and we obtain it from that by substituting
 ,

where the vector c depends on the location while d is location independent.

 

i.e., it holds for every vector d that
 .

This proves (5.68). We obtain finally

 . (5.69)

This is an important result. Comparing (5.69) and (5.16) reveals that a volume
distribution of dipoles corresponds to a distribution of bound volume current
densities

 (5.70)
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and an additional distribution of bound surface current densities

 . (5.71)

The bound volume current density , corresponding to the
magnetization M is called magnetization current density. We refer to a surface
current density when currents of infinite current density flow in a surface, where
the current per unit length remains finite. This results plausibly form the limit
illustrated in Fig. 5.28. Consider a current of density g flowing perpendicular to the
paper plane within the thin layer of width d. In a section of length l, one finds the
current

 
or per unit length

 .
If we let  while , but leaving  finite, then we obtain a surface
current with the surface current density

 ,  .

These formal results are justified as follows. Fig. 5.29 shows a “magnetized”
volume, i.e., a volume filled with dipoles. Let M be perpendicular to the upper and
lower surface. If M is constant in the entire volume, then all internal currents
cancel (Fig. 5.29b). All that remains is a surface current which has the direction of
the cross product (vector product) of M and n. If M is not uniform, then there are
also bound volume currents inside the volume. These are connected to the
circulation of M ( ).

A simple example is a circular cylinder of infinite length which is filled with
uniform dipoles whose axes are oriented along the cylinder axis. There shall be no
free currents inside. However, its surface shall carry surface currents. These are
purely azimuthal. This problem is identical to the infinitely long coil of section
5.2.3, Fig. 5.12. With the magnetization M, we get for the azimuthal component of
the surface current density:

 

and the field inside is

or
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We can also calculate the scalar potential of a volume distribution of dipoles. By
eq. (5.55) we have

 ,

Because of the vector theorem
 ,

this becomes

 ,

and finally with Gauss’ theorem

 . (5.72)

From a formal perspective, this equation is entirely analogous to eq. (2.65).
Therefore, it may be interpreted as being the potential of magnetic volume and
surface charges. Of course, these are merely fictitious and only have a formal
significance. In analogy to eqs. (2.66) and (2.67), one can define the (bound)
magnetic volume charge density 

 (5.73)

and the (bound) magnetic surface charge density 

 . (5.74)

From a formal perspective and in total analogy to electrostatics, the entire
magnetostatics can now be built on these concepts. We may now define magnetic
charges

 

and even write Coulomb’s law for these
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 ,

or show that the force in the magnetic field is
 ,

and so forth. While eqs. (5.72) through (5.74) are valuable tools to calculate fields,
the other analogues, for example Coulombs law, are not specifically relevant, not
even  from a formal perspective, thus, shall not be discussed any further. 

As an example, consider a cylinder of finite length, uniformly filled with
dipoles. It has no (bound) magnetic volume charges, however, there are (bound)
magnetic surface charges at the top and bottom. They create an H field which
compares to the electric field of two uniformly charged disks (Fig. 5.30). It only
describes the field outside of the cylinder. We will need to discuss the inside field
later.

In concluding this section, we summarize the most important results, side by
side with the corresponding results from electrostatics in Table 5.1.

To minimize misunderstandings, the reader is cautioned that in literature
these terms and quantities are not standardized. Frequently, the magnetic dipole
moment in eq. (5.52) is defined without the factor . This also impacts the
magnetization if we consider it to be the volume density of magnetic dipoles, i.e. it
also lacks the factor . The quantity that is multiplied by is then called
magnetic polarization (it corresponds to the magnetization in this text). There is no
need to distinguish between magnetic polarization and magnetization. This
distinction relates to the historically understandable, nevertheless needless,
distinction between an “elementary current theory” and a “bulk-magnetization
theory” of magnetism. The former rests on eqs. (5.69) through (5.71), while the
latter is based on eqs. (5.72) through (5.74). For us, these are not two different
theories on magnetism, but just two equivalent formal consequences of the same
theory, or the same thereby described physical reality. It is a question about the
equivalence of eddy ring and a dipole layer, which we have met several times (for
instance, in Sect. 5.2.5, where we thought of the field of a current loop as being the
field of a dipole layer). This equivalence is what frequently allows to treat
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magnetostatic problems as if they were electrostatic ones and vice versa (notice
that this also allows to treat an electric dipole layer as if it were a current loop
where currents of fictitious magnetic charges flow).

5.4 Forces on Dipoles in Magnetic Fields

A moving charge in a magnetic field experiences the force
 .

If we observe the motion of a charge density distribution , then the force per
unit volume, also called force density, is

 .

electrostatic magnetostatic

Table 5.1
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Since
 

is just the current density, we write
 .

Integrating this equation over the cross section of a current carrying wire
gives the force per unit length at a location of the wire

 ,

where I is a vector quantity pointing in the direction of a wire element, having the
magnitude of the total current I (Fig. 5.31). First, consider a dipole, i.e., a current
loop within a uniform magnetic field (Fig. 5.32). Clearly, all forces cancel – there
is no net force. What remains is a force pair with a torque, trying to orient m into
the direction of B. It shall be noted without proof that this torque is

 . (5.75)

If the magnetic field is not uniform, then there is a net force besides the torque.
Fig. 5.33 illustrates that the net force points in the direction where the field
increases when m is oriented parallel to B. If m is oriented anti-parallel to B, then
the net force points in the direction of the decreasing field (Fig. 5.34). Again
without proof, it shall be noted that the force on a dipole m in a field B where

 is

 . (5.76)
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5.5 B and H in Magnetizable Media

So far, we discussed only fields in vacuum and how they are created by given
currents or dipole distributions. If one brings any matter into an “external”
magnetic field or applies a magnetic field to a space filled with matter, then this
matter becomes “magnetized” and it thereby influences the net magnetic field.
There are a number of concurrent effects, which results in a rather complicated
overall picture. In the context of a phenomenological and macroscopic theory,
these issues can only be touched briefly. 

All matter consists of atoms, molecules, etc. and the shell electrons move
around the nucleus according to certain laws (which can only be understood
quantum mechanically). These moving charges cause currents and magnetic
moments. Depending on the internal structure of a particular material, these
magnetic moments may cancel each other or not, i.e., a material might exhibit
magnetic moments even without an applied field.

It shall be added, that besides the just discussed magnetic moments caused by
circulating currents, there are other, elementary magnetic dipole moments which
can only be explained in a quantum mechanical context (that is, they do not
correspond to circulating currents, at least as far as we know today), just as the spin
of elementary particles (electrons in particular), which also can only be explained
quantum mechanically.

First, we consider a material that has no net magnetic dipole moment as long
as there is no applied field. This kind of material is called diamagnetic. If we now
apply a magnetic field that increases over time, then by the law of induction (see
Sect. 1.11), a voltage is induced, which causes currents and thereby dipole
moments. We then say that the medium is magnetized. Similarly as for the electric
polarization (Sect. 2.8), in a first approximation we can assume a linear
relationship between the magnetic field and the thereby caused magnetization. A
consequence of the law of induction is that the induced B field weakens the applied
field (Fig. 5.35). Formally, this is a consequence of the negative sign in the law of
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induction (1.67), which is referred to as Lenz’s law. Macroscopic, induced currents
generally decay over time because of Ohmic resistance which any medium usually
has. Superconductivity is an exception. The microscopic currents that cause
magnetization (Ampere's molecular currents) do not decay. These flow without
resistance and persist for as long as the external field remains. This is the reason
why there is a unique relation between magnetization and magnetic field for which
we may write 

 . (5.77)

 is called the magnetic susceptibility. Because of Lenz’s law  is negative.
The specific formulation of (5.77) makes  dimensionless. The magnetization M
is oriented anti-parallel to B. This allows to identify a diamagnetic material by the
fact that in an inhomogeneous magnetic field, it experiences a force in the direction
where the field decreases. 

The molecules of a so-called paramagnetic material exhibit net magnetic
moments even without an applied field. However, there is no preferred direction
without an applied field and therefore no magnetization. The individual dipoles are
statistically oriented in all directions and cancel each other on average (spatial and
time average). An applied field causes a torque, which then tries to align the
individual dipoles parallel to the external field. Still, temperature acts to mis-align
the individual dipoles. This mis-alignment is more successful the higher the
temperature. Nevertheless, partial orientation along the external field is achieved.
The diamagnetic effect of induction applies simultaneously, in an attempt to
decrease the magnetization. If paramagnetism is present in that material, then it
prevails over diamagnetism and the same Ansatz as (5.77) can be made, now with
positive . This is the reason why paramagnetic material is drawn toward the side
where an inhomogeneous field increases.  for paramagnetic materials is
temperature dependent, while  for diamagnetic materials does not depend on
temperature.

There are many more magnetic phenomena. Particularly important is
ferromagnetism, especially for electrical engineering. It is related to the spin of
electrons and like paramagnetism, can qualitatively be described by the orientation
of the related magnetic dipole moments. In contrast to paramagnetism, the
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magnetization due to ferromagnetism is several orders of magnitude higher and the
relation between applied field and magnetization is not linear, not even unique (i.e.,
it is not a single-valued function). This means that magnetization is not only a
function of the external field but also of its previous states (i.e., it depends on its
history). Because of its non-linearity, a description of ferromagnetic materials by
susceptibility depends on the current state which, from a theoretical perspective,
does not necessarily make it useful. The susceptibility of diamagnetic and
paramagnetic materials is very small ( ), while the numbers for
ferromagnetism may reach some . Examples:

The reader is alerted about the non-standardized definitions of  when
comparing these numbers with other sources.

The fact that ferromagnetism can not be described by a linear relation has
formal, far reaching consequences. The methods we have developed apply only to
linear problems. There are hardly any mathematical methods available to treat non-
linear problems analytically. Then, numerical methods need to be applied. 

In the presence of magnetized media, it is possible to calculate the magnetic
field as in vacuum, if one explicitly considers all currents, including those bound
currents that originate from magnetization. We write

 ,

where 

 .

Therefore
 ,

or

 . (5.78)

We define the magnetic field strength for magnetizable media

 . (5.79)

This results in our previous relation between H and B for vacuum if .
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 , (5.80)

a relation which holds for any medium, for example, even for a permanent magnet
which has a magnetization that persists even without an applied field. From (5.78)
and (5.79) follows that 

 . (5.81)

This means that H is irrotational as long as there are only bound currents. However,
B is not irrotational in this case, but rather

 .
For “linear media” follows from (5.80) that 

 .

Defining the relative permeability
 (5.82)

and the (absolute) permeability 
 (5.83)

allows to write
 . (5.84)

When calculating H, only free currents are relevant, while the bound currents are
hidden in the relation between B and H. This approach is similar to the one in
electrostatics, where only the free charges are relevant when calculating D and the
impact of bound charges is hidden in the relation between D and E.

The B field is always source free and it is therefore always
 .

The consequence is that H is not necessarily source free, namely if , then:

 .

We have introduced  as the fictitious magnetic charges eq. (5.73)
 , 

which gives

 . (5.85)

The implication is that the H field originates from, or ends at bound magnetic
charges. Because of

 , 
we can also write

 , 
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i.e.,

 . (5.86)

This represents the magnetic Poisson equation.
These properties of B and H can be confusing and are therefore summarized

in Table 5.2 for three cases. 

The field of a cylindrical, uniformly magnetized permanent magnet shall
serve as an example. The H field can be calculated like the electric field of two
circular plates with a surface charge. This gives

 . 

The B field can be calculated like the field of a coil of finite length with the surface
current 

 

or also as shown in Fig. 5.36 and Fig. 5.37, by calculating 
 .

The field of H in Fig. 5.37a) is irrotational but has sources and sinks in the form of
bound magnetic charges at the top and bottom surfaces, respectively. The field of B
in Fig. 5.37b) is source free but has curl in the form of bound azimuthal currents in
the cylinder wall. M in Fig. 5.37c) is neither source free nor curl free. Its curl is in
the cylinder wall (as for B) and its sources are at the top and bottom surfaces (as for
H). It shall be noted that Fig. 5.30 is not representing a magnetized material, but
rather the vacuum field created by given dipoles, which can only be calculated
outside of the cylinder. However, Fig. 5.37 is based on the now generalized

Table 5.2

Fields of free currents
Fields of magnetized matter

Fields of free currents and 
fields of magnetized matter

H, B both 
source free, but 
not curl free

H not source free, but 
curl free
B source free, but 
not curl free

H neither source free 
nor curl free
B source free, but 
not curl free

  ∇2ψ 1
µ0
-----ρmag  –=

B∇• 0=
H∇• 0=
B∇× µ0gf=

H∇× gf=

B∇• 0=
H∇• ρmag µ0⁄=

B∇× M∇×=
H∇× 0=

B∇• 0=
H∇• ρmag µ0⁄=

B∇× µ0gf M∇×+=

H∇× gf=

σmag M n•=

k kϕeϕ
1

µ0
-----M n×= =

B µ0H M+=
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definition of H as of eq. (5.79). Only this new definition defines H inside a
magnetizable medium. 

There are also anisotropic linear media for which  and  become a tensor.
The relation in this case reads:

 , (5.87)

or in short
. (5.88)

The tensor  is symmetric, i.e., 
 . (5.89)
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5.6 Ferromagnetism

Ferromagnetism is a property of iron, cobalt, nickel, and certain alloys. The
relationship between M and H or B and H is very complicated for these materials.
As previously mentioned, it is neither linear nor unique. It depends on the history
of the medium and is also rather different for the various kinds of iron. The exact
relation has to be established by measurements. In principle, the measurement
could be carried out as illustrated in Fig. 5.38. For simplicity reasons, it shall be
assumed that the cross section of the coil is very small compared to its radius r. The
primary current in the coil creates the field

 ,

where N is the total number of turns the current path (primary loop) takes around
the toroid. This creates an EMF in the induction loop (secondary loop) of
magnitude

 .

Integrating the EMF over time gives
 .

Measuring the corresponding values of I and Vi provides the corresponding values
of B and H. Charting these values gives the so-called hysteresis loop (Fig. 5.39).

If we expose a material that has not been magnetized to a H-field that
increases, starting from zero, then B goes through the so-called new curve or initial
curve until it reaches a region that is called saturation. Saturation is characterized
by the fact that the related magnetization does not increase any more. The
magnetization is shown in Fig. 5.40.

Now, letting H decrease, results not in a curve that is merely reversing
direction, but it takes a different path. B or M decrease less than what they had
increased when H was increased. The result is that even when H is zero, B still has
a finite value (remanence or remanent field). To bring B to zero requires a negative

Fig. 5.38
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field (the so-called coercivity or coercive force). Sufficiently large negative fields
lead to saturation in the other direction. When increasing H thereafter, B will take
the path through the other part of the hysteresis loop, eventually arriving again at
the positive side of saturation. Smaller hysteresis loops are achieved when not
going all the way to saturation (Fig. 5.41). The shape of the hysteresis loop
depends on the material and can be wide or narrow, more or less tilted, or almost
rectangular. There are materials with specific hysteresis loops that are more or less
useful for any particular of the multitude of applications in electrical engineering.
An important feature is the area enclosed when passing through an entire hysteresis
loop, since this area represents the losses when changing magnetization. This is

saturationremanence

coercivity

saturation

initial curve

H

B Hysteresis loop

Fig. 5.39

H

M B µ0H–=

Fig. 5.40

M

Fig. 5.41
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plausible: The work done per unit of time, i.e., the power necessary to create the
field given in Fig. 5.38 is

 ,

where  is the voltage in the primary turns

 .

Therefore

 .

 is the volume of the ferromagnetic ring. The necessary power needed per unit
volume is 

 

or 

 (5.90)

and

 .

W is the work necessary to establish the field  starting at . It corresponds per
unit volume to the shaded area of Fig. 5.42.

The area of the integral for an entire loop is shown in Fig. 5.43 

 . (5.91)

This means that a wide hysteresis curve, which is characteristic of so-called “hard
materials”, leads to large losses during re-magnetization. Thus, hard materials are
not suited for transformers, for which “soft materials”, with a narrow hysteresis
loop are better suited.
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Although from a purely formal perspective, the relation between B and H is
rather complicated, we can write the constitutive equation in this form

 ,

where  or  are now functions of H and its previous states. When subsequently
using this terminology, it shall not be understood to suggest any kind of linearity.
Rather a specific condition shall be characterized by a corresponding factor. 

An electromagnet with a ferromagnetic core and a small air gap (Fig. 5.44)
shall serve as an example. As long as the toroid is relatively slim and the gap
sufficiently small, we may consider the fields  inside the core and  in the air-
gap approximately uniform and can also neglect that the different force lines have
different lengths. Then we may write
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and furthermore
.

The reason is that the perpendicular components of B must be continuous at the
boundary, which will be demonstrated in the next section. This leads to

 ,

and furthermore

 ,

or

 . (5.92)

This represents a very simple example of a so-called magnetic circuit. In
general, such a circuit may consist of several pieces of different length, different
cross section, and different permeability  (Fig. 5.45). We approximate that
the flux is the same through each piece, which is equivalent to neglecting the flux
leakage (fringe effects). One writes:

 ,

 ,
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B
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and 

 ,

or

 . (5.93)

For comparison, we write Ohm’s law for a circuit of several resistors in
series. 

 . (5.94)

Notice the close formal analogy. NI replaces the voltage, which is why this relation
is sometimes called the magnetomotive force. The flux  replaces the current I.
The sum

 ,

represents the resistance and is therefore called magnetic resistance . For an
individual element we have now

 . (5.95)

Permeability is the formal equivalent of conductivity and may therefore be
interpreted as magnetic conductivity. This analogy can be generalized to apply to
entire networks with branching magnetic “currents”. However, necessary is to
remember that these are simply approximations, which are not necessarily
accurate. To estimate accuracy may be difficult at times. Nevertheless, these kind
of approximations may be acceptable when exact field theoretical calculations
become too difficult. 

5.7 Boundary Conditions for B and H, and the Refraction of 
Magnetic Force Lines

It always holds that
 ,

 .
These relations allow one to derive the boundary conditions that H and B have to
satisfy. 
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n
∑
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Rmag i,
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Consider the area element , where the vector  lies in the boundary, i.e.
the area element  is perpendicular to the boundary (Fig. 5.46). One writes the
integral

 

where  is the surface current density in the boundary (note that  does not
contain any magnetization currents). Therefore

 

or
 .

This is true for every surface element on the boundary and therefore
 . (5.96)

If there is no free current in the surface  this reduces to
 

or
 , (5.97)

that is, the tangential components of H are continuous. The presence of a surface
current density causes a discontinuity of the tangential components.

Now, consider the small slice of volume as illustrated in Fig. 5.47. Here, we
have
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i.e.,
 

or
 . (5.98)

The normal components of B are always continuous.
From eqs. (5.97) and (5.98) follows the law of refraction for magnetic field

lines. For simplicity reasons, we assume no free currents in the surface. Using
Fig. 5.48, we find

 

that is
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 . (5.99)

If  (for example at the boundary between a ferromagnetic material and
vacuum) then we have either  or . This means that the force lines
either enter the ferromagnetic material perpendicularly, or they are tangential to its
surface (Fig. 5.49).

The formulas derived above do not consider possible effects of dipole layers.
As before in the electrostatic case, dipole layers modify the boundary conditions. 

Sometimes, the boundary conditions for A are needed. Because of 
 

and 
 ,

similar considerations as before lead to the result that both, the tangential and the
normal components of A have to be continuous at the boundary:

 . (5.100)

The following sections are dedicated to illustrate the boundary conditions by some
examples.

5.8 Plate, Sphere, Hollow Sphere in a Uniform Magnetic Field

5.8.1 The Planar Plate

Consider a planar plate of magnetic material ( ) be placed inside a uniform field
 which is perpendicular to the plates (Fig. 5.50). This causes a uniform

magnetization inside the plate
 .
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The magnetization M causes an opposing field  (more precisely, this field
weakens the applied field in ferro- and paramagnetic materials, while it amplifies
the applied field in diamagnetic materials). The resulting net field inside is

 .

And so for the magnetization:
 .

Now we determine the field  caused by M. At the surface, M causes fictitious
magnetic charges  (for example for paramagnetism + on top and - at the
bottom). The result for paramagnetism is a field pointing downward.

 .

Any case, it is always true

 . (5.101)

Therefore
 

i.e.,

, (5.102)

and

 . (5.103)

Analogous to the definition of the de-electrification factor in Sect. 2.12.4,
eq. (2.141), one may now define the de-magnetization factor of the plate ( ).
With eq. (5.103) one obtains

 .

i.e.,
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 . (5.104)

This shows that for a paramagnetic plate ( )  and for a diamagnetic
plate ( ) , as mentioned above already. Furthermore,

 ,

that is, B is continuous, as necessary. We could have used this fact to directly obtain
eq. (5.104). 

5.8.2 The Sphere

Consider a sphere (of ) in a space (of ) and placed in an applied uniform field
 extending to infinity (Fig. 5.51). As for the electrostatic case, we can solve

this problem by superposition of a dipole field on the outside and a uniform field
inside. This solution is also the only one possible. We try the following Ansatz

 . (5.105)

Two constants  and C need to be determined. They result from the boundary
conditions at the sphere’s surface , where  and  have to be
continuous. We start with

 ,

i.e.,
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 ,

i.e., the B field outside and inside is

 .

This determines the boundary conditions to be

 .

The result for  after eliminating C becomes

 (5.106)

and

 . (5.107)

Those results are, again, entirely analogous to those obtained in electrostatics. Only
replacing  by  gives the previous results from electrostatics. The field inside is
uniform, which is only the case for ellipsoids and their limiting cases. 

If  (ferromagnetic sphere in vacuum, see Fig. 5.52), then
 ,

i.e., the field is magnified by a factor of 3. However,  becomes very small
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 .

The force lines outside are perpendicular to the surface. The field is equivalent to
the electric field of a conductive sphere in a uniform external field. 

For a sphere in vacuum the relation is  and therefore, we can write
 in the following form:

 (5.108)

where, of course, 
 .

The de-magnetization factor of the sphere is therefore . This relates to the
fact that the field of a uniformly polarized sphere (M) creates the field inside

 .

5.8.3 The Hollow Sphere

The problem of a hollow sphere in a uniform, applied field  can be solved in a
similar manner (Fig. 5.53). There are three regions with the permeabilities

. For the potentials, we try the Ansatz

 . (5.109)
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The four constants  are determined in the familiar way by two
boundary conditions at  and two at . They result in these equations:

 . (5.110)

Cramer’s rule may be used to solve for . We skip the laborious, but trivial
algebra. The final result is

 . (5.111)

The previously calculated case of the sphere is a special case of this. Letting
 gives again eq. (5.106). Another interesting case is for 

(vacuum), . Now the field is

 .

For a uniform ferromagnetic hollow sphere we have  and therefore

 .

If also , then

 .

This is an important and handy result. Since  may take on values of the order of
, i.e.,  is by 3 to 4 orders of magnitude smaller than the outside field. This

means that highly permeable materials allow for the shielding of external fields
(Fig. 5.54). Of course, the B field is:
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 .

5.9 Imaging at a Plane

The next problem considered deals with the magnetic field of an infinitely long,
straight, current carrying wire. The wire shall be parallel to a boundary that
separates two materials of different permeability (Fig. 5.55). If we let ourselves be
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guided by the broad analogy between electrostatics and magnetostatics above, then
we might suppose that the problem can be solved using image currents I’ and I’’
(compare sects. 2.11.2 and 4.5.1.). Therefore, we try (and also show that this is
correct) to express the field in region 1 as the superposition of the fields of  and

, and in region 2 as the field of . According to eq. (5.28), the field of a current
 has the field

 ,

for the current , the field is

 ,

and for the current , the field is

.

Therefore, we write for the field in region 1:

 . (5.112)

and for region 2:

 . (5.113)

Because for , both  and  have to be continuous, it has to be

 .

When cancelling common terms we get

 . (5.114)

Solving for  and gives
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 . (5.115)

Notice when comparing these results with the corresponding electrostatic problems
of Sect. 2.11.2, that the relations become the same when replacing  by  (not

). 
The field in region 2 is the result of two currents, in the same manner as it was

discussed in Sect. 5.2.1, Fig. 5.9. The currents  and  are parallel when 
and they are anti-parallel when . The field lines in region 2 are concentric
circles. The fields are planar, i.e., they are independent of z and the fieldlines are in
planes parallel to . Figs. 5.56 through 5.58 show examples of such fields.
Shown are the lines of B, which are source-free at the boundary.

We have solved the problem with the Ansatz (5.112) and (5.113) by formally
applying the boundary conditions. This disguises what really happens. The current
I magnetizes both materials. The result are magnetization currents at the boundary
at  and also in the vicinity of the current I.

We start with the boundary between the two materials at . Using
eq. (5.77) and with the fields described in (5.112) and (5.113), we find for the
boundary
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 (5.116)

and 

Fig. 5.57

Fig. 5.58
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 . (5.117)

The surface current density of the magnetization current in the surface results from
(5.71)

 .

where

and 
 .

Thus, k has only a z-component, namely

 . (5.118)

Now, we look at the neighborhood of the current itself. It flows inside the center of
a small cylindrical vacuum, which is removed from the surrounding medium ( )
(see Fig. 5.59). At the surface of the medium one has

.

or

 .

This results in the surface current density
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Fig. 5.59
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and the magnetization current

.

The total or effective current, including I is now

 . (5.119)

This does not change, even if we let the radius  approach zero. Compare this
result with the effective charge  of Sect. 2.11.1. Again, 
replaces .

Eqs. (5.118) and (5.119) define all currents. It is possible to calculate their
magnetic field B, which will manifest itself in the field given by eqs. (5.112),
(5.113), and (5.115). First, we calculate the field caused by the surface current .
By (5.28) and (5.118), we write

 . (5.120)

These two integrals can be solved with the usual methods of calculus. After some
cumbersome algebra we obtain

 (5.121)

 . (5.122)

Finally for , this results in 

 (5.123)

and for 

. (5.124)

The field of the current  at  needs to be added. By (5.28) 
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 . (5.125)

The total field in region 1 ( ) is finally 

 

and in region 2 ( ), when using (5.114)

 .

As expected, this is exactly our previous result of (5.112), (5.113), and (5.115).
Formally, one can utilize the fictitious magnetic charges which are caused by

magnetization. One can imagine that the entire field is created by the current I on
one hand, and the fictitious magnetic charges on the other. The fictitious magnetic
charges are located exclusively on the boundary . According to (5.74), these
surface charges are

 . (5.126)

These can be thought of as parallel line charges in z-direction. An individual line
charge  causes the field

 , (5.127)

which can be shown by analogy to electrostatics using (5.85) and symmetry
arguments. Therefore, the field is
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 . (5.128)

These integrals can, for the most part, be reduced to the ones we had before (5.121)
and (5.122). 

(5.129)

 . (5.130)

Then, the field of the fictitious magnetic charges alone for  is

 (5.131)

and for 

 . (5.132)

The field of current I is 

 

Combining all these fields gives the field of eqs. (5.112), (5.113), and (5.115).
With this example, and in harmony with the general theory, we have shown

that the impact of a magnetized medium can be calculated by magnetization
currents or by fictitious magnetic charges, both rendering the same result.

It shall be noted that the case of  allows, at least formally, for an
interesting interpretation. In anticipation of the discussion on the skin effect in
Chapter 6, consider an ideal conductor in region 2. Then no B-field can penetrate
this medium from outside (there could be pre-existing fields inside, however).
Suddenly applying a current I outside (region 1), causes induced currents at the
surface  (of an infinitely conductive medium in region 2) which are such,
that they exactly cancel all fields that this current otherwise would have created
internally (in region 2). In case of finite conductivity, these currents decay
gradually, which allows the external field to gradually penetrate the conductor.
However, in case of infinite conductivity, these currents do not decay and the fields
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remain excluded. The proof of this will be provided in Chapter 6. Nevertheless,  we
can discuss the corresponding image problem already. Although a material with
infinite conductivity may posses any permeability, we may still formally satisfy the
condition that all B-fields vanish in region 2, by letting  in above result.
This yields from (5.115)

, (5.133)

and from (5.118) with  we get

 (5.134)

where

. (5.135)

Of course in reality, there is no current in region 2. There is only a surface current
(5.134) at the surface at , which according to (5.135) just totals the image
current -I. Calculating the field of the current in region 2, using (5.124),
(5.133), and  gives

 

 ,

and the field of the current I

 

 ,

is, in deed, exactly canceled.

5.10 Planar Problems

For an arbitrary distribution of currents in z-direction 
 , (5.136)

the vector potential is by (5.15) 
 . (5.137)

The corresponding magnetic field B is

 . (5.138)
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 is constant along a force line, i.e.,  can take the role of the flux function:

 . (5.139)

On the other hand, the situation outside of the current carrying region it is
 . (5.140)

where
 . (5.141)

The lines  are perpendicular to the field lines. Therefore, the lines
 and the lines  establish an orthogonal grid (see Sect. 3.10

through 3.12). We obtain

 . (5.142)

Therefore, the functions  and  satisfy the Cauchy-Riemann
equations (3.380) and thus, may be considered as the real and imaginary part of a
complex potential  (see also (5.33)):

 . (5.143)

The consequence is that the methods of conformal mapping apply to
magnetostatics as well. 

We have already met the example of the complex potential of an infinitely
long, straight wire in Sect. 5.2.1, eq. (5.34).

5.11 Cylindrical Boundary Value Problems

5.11.1 Separation of Variables

The separation of variables method is also important in solving magnetostatic
problems. It will suffice to discus a few examples in cylindrical coordinates.

In Sect. 5.1, we have restricted ourselves to Cartesian coordinates, which
enabled us to use the known solution of the scalar Poisson equation to solve
Poisson’s vector equation (5.12). It is also possible to use curvilinear coordinates,
for example, cylindrical coordinates. Then one needs to solve the set of equations
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given in (5.14). For simplicity reasons, we restrict ourselves to rotationally
symmetric fields, and assume that there are only azimuthal currents.

 . (5.144)

Based on Sect. 5.2.4, one concludes that A also has only an azimuthal component
 . (5.145)

According to (5.14) it is for :

 .

In particular for the current-free space

 , (5.146)

or written more explicitly using (3.33):

 . (5.147)

In order to solve this equation by separation of variables, we write the Ansatz
 , (5.148)

as before in Sect. 3.7, and obtain

(5.149)

and

 , (5.150)

with the solution
 (5.151)

or
 (5.152)

and
 . (5.153)

Alternatively, one may use

(5.154)

to obtain 
 . (5.155)

and
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 . (5.156)

To calculate the scalar potential  is possible. The relation for the current-free
space is then

 , (5.157)

or 

 . (5.158)

Using the separation Ansatz
 (5.159)

gives the same result as before, except that for all cylinder functions, the index 1 is
replaced by 0.

The choice here is to either pick Z as of (5.151) or (5.152) with 
 (5.160)

or pick Z as of (5.155) with
 . (5.161)

Before discussing examples of boundary value problems in detail, we shall provide
some insight into rotationally symmetric fields.

5.11.2 Structure of Rotationally Symmetric Magnetic Fields

The function  is constant along field lines. From 

follows with (5.145) that 

 .

Therefore, for rotational symmetry , it is:

This means that  is the flux function of the rotationally symmetric field.
The l ines  are  the f ield l ines laying in the r-z  plane
( ) 

The field used initially based on g as of eq. (5.144) is not the most general
rotationally symmetric field, which is rather
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 .

Both vector fields are source-free:

 .

Both conditions are satisfied by two arbitrary functions  and  when
calculating the r- and z-components of g and B as follows:

 . (5.162)

This allows one to calculate:

 .

Thereby, G is constant along the field lines and F along the current density lines.
Furthermore, from 

follows that 

 (5.163)

The term  can be regarded as the magnetic flux through a disk of radius r,
oriented perpendicular to the z-axis and the term  as the current through this
region.

 .
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and because of eq. (5.21)

which makes the eqs. (5.163) plausible. 
The fields lines run entirely on the surface , i.e., on toroidal,

rotationally symmetric surfaces with a cross section for example, as shown in
Fig. 5.60. Thus, a given force line never leaves this surface. There is no azimuthal
field if  and then, all field lines lie on the surface  When
superposing azimuthal fields , then the field lines spiral around the toroidal
surfaces   This makes it possible that the field lines close
themselves after a number of loops. However, that has to be regarded as the
exception. We emphasize this here because of the frequent misconception that in
order for B to be source free, the B lines have to either close or go to infinity. This
is wrong. Field lines can remain in the finite space and still never close up, for
example, on a toroidal surface as in Fig. 5.60 whereby filling the surface arbitrarily
dense. We could rightfully state that a field line, when it does not close, creates the
toroidal surface (the so-called magnetic surface). Of course, if we were to trace a
field line from a starting point through sufficiently many loops, then we would find
that this line will come arbitrarily close to the starting point and thus, the line
“nearly” closes.

5.11.3 Examples

5.11.3.1 Cylinder with an Azimuthal Surface Current

Consider a cylinder of radius  carrying the azimuthal surface current ,
where

 . (5.164)

Then one writes for  in the regions 1 and 2 (shown in Fig. 5.61)
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 . (5.165)

Arguments of the kind used in Sect. 3.7 serve to justify this statement. Use of
 alone, without , is a result of the symmetry (5.164). Furthermore,

notice that  diverges at the origin, while  diverges at infinity. The functions
 and  are determined by the boundary conditions at , where

has to be continuous and the z-components of the field have to fit the current, that
is, according to (5.96) it must be

. (5.166)

Continuity of  results in

i.e.,
 . (5.167)

Using (5.166) and 

(5.168)

(5.169)

gives

Fig. 5.61
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where  is the Fourier transform of , and then

 . (5.170)

Eqs (5.167) and (5.170) allow to calculate the two functions  and .
Specifically, if

(5.171)

 (see eq. (3.198)), then 

 . (5.172)

When applying

this gives  and  

and ,

and for the vector potential

 . (5.173)

Similar considerations allow to calculate the scalar potential. The calculation is left
for the reader as an exercise. The scalar potential for the loop current (5.171) is

 . (5.174)
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 . (5.175)

Indeed, both  and  result in the same field

 , (5.176)

where besides eqs. (5.168) and (5.169), the following relations are also needed

, (5.177)

. (5.178)

Obviously, from (5.176) it follows that these fields exhibit the correct symmetry
relative to z. The radial components are anti-symmetric in the case of symmetric
current distributions and the longitudinal components are symmetric. This behavior
is a result of (5.175) if  is stated as a symmetric and  as an anti-symmetric
function.

Of course, this special case (5.171) corresponds to the current loop, discussed
previously in detail (Sect. 5.2.4). The vector potential (5.173) is initially just a
rather complicated Fourier series of the previously found vector potential (5.48).
Both equations are equivalent. Nevertheless, the Fourier series (5.173) is much
more useful when solving boundary value problems than the other, much handier
equation (5.48). An example shall serve to illustrate this (Sect. 5.11.3.3). However,
in the following example (Sect. 5.11.3.2), we will first derive another form of the
same potential.
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5.11.3.2 Azimuthal Surface Currents in the x-y-Plane

Let an azimuthal surface current flow in the plane  and let it depend only on
r (Fig. 5.62). This is an opportunity to use the other solution (5.151) through
(5.153) and (5.155), (5.156), respectively. The example of Sect. 5.11.3.1 required
one to use the second form, since a function of z was given on a cylinder, which
required a Fourier transform with respect to z and thereby the Ansatz with the
trigonometric functions. In the current example, a function of r is given. This
requires a Hankel transform, which is possible with the first of the two trial
functions. To satisfy the boundary conditions for , where the fields have to
vanish, we write

 , (5.179)

where the index 1 addresses the region  and the index 2 the region .
First, for  is must be

 ,

from which results
 . (5.180)

This allows to combine the two trial functions of (5.179) into

 . (5.181)

The task is now to find  for  such that (see (5.96))
. (5.182)

Based on (3.224), we introduce the Hankel transformed function

 (5.183)

where by (3.225)
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Fig. 5.62
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 . (5.184)

Then for 

 . (5.185)

Using

gives for 

 .

or
 . (5.186)

In particular, consider the current loop I at 
 . (5.187)

Then by (5.183)

and in our case

 , (5.188)

i.e.,

 . (5.189)

This is yet another representation of the potential of a current loop. It is equivalent
to the two previous ones, (5.48) and (5.173). Certain boundary value problems
require this form. Such a problem would, for instance, be that of a current loop
located in the plane at , opposite to a plane boundary at  between two
media of different permeability ( ), as illustrated in Fig. 5.63. We will skip
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this problem here, except to note that it can be solved in a similar way as the
problem in the next example.

5.11.3.3 Current Loop and Magnetizable Cylinder

Let the space contain two media of different permeability. Permeability in
region 1( ) is  and  for region 2 ( ). Region 1 hosts a circular
current loop with the current I. Its radius is  (Fig. 5.64). We want to find the
behavior of the fields in the two regions.

There are no currents in region 2. This is equivalent to a vacuum field. We try

 , (5.190)

The current I needs to be considered in region 1, i.e., the inhomogeneous equation
(5.146) needs to be solved. We already know the special solution for the ring
current I. The solution for the general solution is just the superposition of that
particular solution, and the solution of the homogeneous equation, i.e., the solution
for the vacuum. Therefore for :

 (5.191)

and for 

 . (5.192)

For , this gives exactly the field of the current I alone, i.e.,  and 
describe the effect caused by the existence of the second medium ( ). In other
words:  and  express the magnetization currents on the boundary at . 
and  are determined by the boundary conditions at , which are:

, (5.193)
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and

 . (5.194)

This gives
 (5.195)

and

. (5.196)

Solving for  and   gives

 (5.197)

 . (5.198)

This basically solves the problem. Of course, the special case of  with
 is just the field of a current loop in a uniform medium.

As before in Sect. 5.9, it is possible to calculate the magnetization currents in
the surface  and show that these currents just represent the additional field
created by  and . First

 

where with

 (5.199)

and applying the already frequently used formula 

  (5.200)
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 . (5.201)

One can show that the integral is positive. Therefore,  is positive when ,
and is negative when (assuming a positive current I). The former case
results in attracting forces and the latter in repelling ones. 
If the current loop (in region 1) is in vacuum ( ), then it is attracted by a
paramagnetic cylinder, and repelled from a diamagnetic one. This is true also for
differently shaped bodies and current loops. The total magnetization current is

 

 .

According to eqs. (3.178) through (3.180), this limit is  and therefore

 . (5.202)

The case when an external field shall be shielded by a cylinder with infinite
conductivity can formally be described by letting . With  one
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 (5.203)

and the total current is

 . (5.204)

The entire surface current in this case totals to exactly -I, i.e., the same amount as
the current in the loop, anti-parallel, however. This is necessary. Otherwise, there
had to be a magnetic field in the cylinder due to Ampere’s law. 
Fig. 5.65 provides an example for the field lines when . 

5.12 Magnetic Energy, Magnetic Flux and Inductance 
Coefficients

5.12.1 Magnetic Energy

We have discovered already in Sect. 2.14.1 that the potential energy density stored
in a magnetic field is . The total energy is therefore

 .

Using (5.7) yields 

 .

With the vector identify

this gives

 

or

 .

The surface integral has to include all possible boundaries. A sphere at infinity
does not provide any contributions because of the sufficiently fast decrease of

 as R increases (the product is proportional to ). This can be seen from
eqs. (5.16) and (5.17). Inside surfaces – they need to be considered from both sides
– do not provide any contribution as long as  is continuous. As we
will see shortly, this is the case, as long as there are no surface currents in the
boundary. The energy is then:

 . (5.205)
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This interesting result should be compared to a similar equation obtained for the
electrostatic energy (2.171):

 .

If there are surface currents in the boundary, then the surface integral contributes to
the energy, namely

 

By eq. (5.96), this gives

 .

These contributions, originating from surface currents, can be thought of as being
contained in eq. (5.205). Now we have to consider all currents in this equation,
even surface currents, for which, indeed,  is infinitely large, but  remains
finite.

By (5.16) and (5.205) it is finally:

 . (5.206)

Now consider a system consisting of n closed conductors with the currents ,
. Then

 ,

and

 

i.e.,

 , (5.207)

having defined the so-called inductance coefficients  in the following way

 . (5.208)
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The reciprocity (symmetry) of these coefficients
 (5.209)

is an immediate consequence of definition (5.208). When , these coefficients
are called self-inductance coefficients.

There are two ways to calculate : either use (5.208) or calculate W and then
compare it with (5.207). The latter is usually the more convenient approach. Two
simple examples shall serve to illustrate this.

1) The Coaxial Cable (Fig. 5.66)
If the conductors in the cable are very thin (or they have infinite conductivity), then
the situation is as sketched in Fig. 5.66. The field is

 

 

 .

Total energy becomes infinite if the length is infinite. Per unit length, however, it
remains finite.

 

which yields the self-inductance coefficients per unit length 
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 , (5.210)

a frequently used, and in practice important result.

2) Two infinitely long Coils (Fig. 5.67)
Consider the currents  and  flowing in the two coils with  and  turns per
unit length, respectively. Inside coil 1, this creates the field 

 

and between coil 2 and coil 1 the field
 .
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and by comparing coefficients
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 . (5.211)

Notice that the currents  carry a sign and the mixed terms (here ) 
may be both, positive or negative.

5.12.2 Magnetic Flux

Consider one or more circuits with the magnetic energy

 .

In the outside space, i.e., outside the current carrying conductor, the field may be
written by means of the scalar potential 

 .
We now assume that with respect to the extent of the outside space, the width of the
conductor is negligible. Consequently, we only need to take the volume integral
over the outside space and the inside contribution, including that of the magnetic
energy inside is negligible. This gives

 .

Because of the vector identity
 

this becomes

 .

Using
 

and applying Gauss’ integral theorem gives
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If we initially concentrate on one conductor (shown in Fig. 5.68) we get
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Because 

 

is continuous, that is,

 

and therefore the energy becomes

 .

By (5.58) and in analogy to the electrostatic dipole layer (see Sect. 2.5.3), 
is constant along the entire separating surface

 .

This makes 

 , (5.212)

having used the fact that 

is the flux through the separating surface. On the other hand, since
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 ,

comparison shows that consequently
 . (5.213)

This result may be generalized to arbitrarily many conductors:

 . (5.214)

Conversely, because of 

 ,

it is also

 . (5.215)

One concludes that the flux through a conductor loop is a linear function of all
currents

 

If the currents are time dependent, then the magnetic flux is also time dependent.
The law of electromagnetic induction states, except for the sign, that the temporal
change of  equals the EMF induced in the conductor loop. That is the
reason why the inductance coefficients are important for the induced voltages in a
network, which also explains their name.

Eq. (5.215) provides another avenue to calculate the inductance coefficients.
Consider for example, the two coils calculated above. For these one has:
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The fact that  is proportional to  shall be explained more plausibly. One
factor  is a result of the magnetic inductance by the number of turns per unit
length. The second factor  results from the surface, shown in Fig. 5.69, that
borders the coil and which connects the individual turns in a helical way. The
projection of this surface onto a plane perpendicular to the coil’s axis gives the 
multiple of the coil’s cross section. Fig. 5.70 gives a schematic representation of
this.
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6 Time Dependent Problems I (Quasi Stationary 
Approximation)

Maxwell’s equations were introduced in Chapter 1, but with a few exceptions, we
have not discussed them in their complete form. So far, we have focused on time
independent problems, specifically electrostatics in Chapter 2 and 3, stationary
electric currents in Chapter 4 and magnetostatics in Chapter 5. Now, we turn to
time dependent problems. We will do this in two steps. The time dependent
Maxwell equations differ from the stationary ones by two terms, the displacement
current  in the first and the magnetic induction  in the second
Maxwell equation. We will account for this fact in our proceedings. Specifically,
the displacement current may be neglected in a first approximation, while the law
of induction needs to be considered. This approximation does not allow us to
describe electromagnetic waves, since the displacement current is vital for these.
On the other hand, skin effect, eddy currents, and similar effects can be described
without the displacement current term. The applicability of this so-called quasi
stationary approximation is limited to cases where the temporal changes do not
occur too rapidly. We will postpone the discussion of the complete version of
Maxwell’s equations to the next chapter, (Chapter 7), where we will study
electromagnetic waves by including the displacement current term.

6.1 Faraday’s Law of Magnetic Induction

6.1.1 Induction by a Temporal Change of B 

Consider a time dependent magnetic field described by the magnetic induction or
also called the magnetic flux density  and a contour C, fixed in space. The
contour may be implemented by an infinitely thin, conducting material. If A is the
area that C circumscribes, then by our definition, eq. (1.66), the magnetic flux
penetrating this area is 

 . (6.1)

The time dependent magnetic field  induces an electric field , which
can be described using eq. (1.68)

 . (6.2)

The line integral of the electric field is given by the time derivative of the magnetic
flux:

 . (6.3)

Expressed in a different form, one writes
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 , (6.4)

where  is the voltage (EMF), induced within the closed loop. Figure 6.1 shows
the direction of the induced field for an increasing and a decreasing B-field,
respectively.

6.1.2 Induction through the Motion of the Conductor

Inside a magnetic field B, the Lorentz force 
 (6.5)

acts on a particle with charge Q, and velocity v. 
One can also explain this force as being the effect of an electric field E on a particle
within a moving reference frame, where

 . (6.6)

If one now moves a closed conductor loop (made of infinitely thin wire) within a
magnetic field that is constant in time, then the line integral along the path S
(Fig. 6.2) is

Vi E sd•
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Vi
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 .

While the conductor loop moves during the time period , the path element 
covers an area element  (Fig. 6.2):

.
Therefore

 , (6.7)

where we have only considered the flux change based on motion of the loop within
a constant B field. Temporal changes of B itself are currently excluded, as outlined
above. Consequently, as a result of the Lorentz force, the temporal change of the
magnetic flux  in a closed loop is given by line integral  (compare (6.3)
with (6.7)).

The loop of a conductor does not have to be closed. It is possible for example,
to move a piece of wire perpendicular to a magnetic field (Fig. 6.3) This causes an
induced field  inside the wire of magnitude 

 , (6.8)

An electric current flows inside the conductor as a result of this field. This
continues until E becomes zero ( ). Charges are moved to the surface of the
conductor and the resulting electrostatic field gradually cancels the induced field
inside the conductor. 
The final state is an electric field between the ends of the conductor that creates a
field outside, whose potential difference is exactly the EMF which was initially
induced. Its magnitude is

 . (6.9)

No EMF is induced when moving an entire conductor loop transverse to a uniform
magnetic field (Fig. 6.4). The reason is that the partial EMFs mutually cancel. The
flux through the loop remains unchanged. When moving just one part of the loop,
while maintaining contact with the rest of the loop, then there will be an EMF of
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magnitude  (Fig. 6.5). This results from (6.9) as before, and correlates to the
temporal flux change because of 

 ,

where

 . (6.10)

Faraday’s law of electromagnetic induction is of great importance for many
technological applications. Most generators, i.e., current producing machines, rely
on the EMF generated in a conductor loop when rotating within a magnetic field.
During this important process of energy transformation, mechanical energy is
transformed into electrical energy (Fig. 6.6).
If  is the angular velocity, then the flux encompassed during the time period t is 

 , (6.11)

which lets the induced EMF become
 . (6.12)
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This is the principle of alternating current generators. Direct current can be
produced by means of commutators, a subject which we will leave untouched.

6.1.3 Induction by simultaneous temporal Change of B and Motion 
of the Conductor 

The two effects discussed in sects. 6.1.1 and 6.1.2 can also occur simultaneously
and in such case need to be added. The equations read

 ,

 . (6.13)

Notice the “total time derivative” in the operator , which indicates that the
time derivative of the total flux applies, regardless of the origin of its change by
either the change of the magnetic field or by motion of the conductor. When using
the vector potential A (to avoid ambiguity, we will now change the symbol for the
area element to da and the area to a), to obtain

 

or

 .

Since this is true for any surface, this has to be true for the integrand

Fig. 6.6

B

v

v
l

a

ω

E sd•∫°
∂
∂t
---- B Ad•

A∫– B v ds×( )•∫°–=

  E sd•∫° td
dφ  –=

d dt⁄

E sd•∫°
∂
∂t
---- A∇× ad•

a∫– v B×( ) ds•∫°+=

 ∂
∂t
---- A∇× ad•

a∫– v B×( )∇× ad•
a∫+=

E
t∂

∂A v B×–+ 
 ∇× ad•

a∫ 0=



348 Time Dependent Problems I (Quasi Stationary Approximation)

 .

Introducing a suitable scalar function , we may write

 . (6.14)

The field E here is the one which an observer would “see” when moving with the
conductor. An observer at rest then sees the field

 , (6.15)

a relation which is a generalization of eq. (1.47) for time dependent problems, and
will occupy us some more later on.

Equation (6.13) expresses that the EMF induced in a conducting loop is
always given by the total time derivative of the overall magnetic flux, regardless of
whether or not the loop is moving or flexible. Notice that this peculiar
phenomenon, that two such apparently different effects – temporal change of a
field and motion or change in shape of a closed conductor loop – are related in such
a simple manner. This can be made plausible by imagining the individual force
lines. Then, an increasing field can be thought of as adding lines of force to the
existing field inside the closed loop. Conversely, when field lines move out of the
loop, then the overall field decreases over time. The lines added or the lines
removed are in motion relative to the conductor, which one considers as being at
rest initially. The effect is the same, whether a line of force moves in a certain
direction through the conductor or if the conductor moves in the opposite direction
relative to the force line. This intuitive understanding can also be used for
quantitative analysis and allows to unify understanding of these initially different
effects.

Often times, the task is to analyze not closed, but open loops. For a path that
goes in part through the conductor and in part through vacuum (Fig. 6.7), the
integral becomes

E
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 .

This considers already that volume charges caused by currents (or other preexisting
volume charges) superimpose an electrostatic field  over the induced electric
field  , where the electrostatic field  is derived from the potential . The
latter is, of course, irrotational. The field is

 ,

where
 

or
 .

Therefore, it is always

 .

Eq. (6.13) derived above also holds in the case of superpositioning of electrostatic
fields, regardless of whether these fields are a result of induced currents or not.

The reader is alerted to a possible miss-interpretation of eq. (6.13). This is
best discussed by means of two examples. For this purpose, the unipolar machine is
described and interpreted first, followed by Hering’s experiment.

6.1.4 Unipolar Machine

Consider the wheel made of conductive material as shown in Fig. 6.8, rotating with
a constant  in a magnetic field. For simplicity reasons, we assume that the
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magnetic field is uniform and oriented parallel to the axis of rotation. Two brushes
provide connectivity between the stationary outside part of the circuit that includes
a voltmeter and the rotating part inside. The connection to the rotating part of the
circuit is located at the rotating axis on one hand and the edge of the wheel on the
other. The result of this closed circuit is an induced EMF that can be calculated as
follows: Velocity is a function of the distance to the center

 . (6.16)

Eq. (6.6) allows to calculate the electric field
 . (6.17)

and

 . (6.18)

The problem can be solved in a rather simple manner. However, if we start with the
magnetic flux through the circuit, we encounter difficulties. First, notice how
unclear the quantitative description of this flux actually is. One could state that the
flux is always, identically zero  (Fig. 6.9a). Then, the induced EMF would
have to vanish, an obviously incorrect conclusion. However, the circuit as shown in
Fig. 6.9b is also a possibility. This yields

 ,

which is the correct result for the induced EMF

 .

However, this explanation is not very persuasive. While there are a number of
possible ways to define , it is not unique. The definition in Fig. 6.9b was
designed to provide the correct result, but that does not prove anything in and by
itself. What is always true is
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 ,
and, is therefore a useful basis to calculate the EMF. Using the flux in this and other
similar situation makes no sense.

6.1.5 Hering’s experiment

Fig. 6.10 shows a magnet for which one assumes that there is no leakage of its flux.
It has an air gap that is penetrated by a magnetic field. Outside the magnet, there is
a conducting loop with elastic contacts that ensure a closed circuit at all times. The
circuit also includes a voltmeter. Now, we move the conducting loop from its
position Fig. 6.10a to position Fig. 6.10b. This causes a voltage impulse. 

 ,

in the voltmeter. The spring loaded contacts ensure that the circuit remains closed.
The loop is further moved to position Fig. 6.10c, whereby nothing happens, i.e.,
there is no induced EMF. Finally, the loop is pulled from the magnet to the outside,
as illustrated in Fig. 6.10d. The spring contacts open, but stay in contact with the
magnet, so the circuit is still closed at all times.

The last phase is shown in more detail in Fig. 6.11. The question is now, what
EMF is induced during the process of going from state Fig. 6.11a to Fig. 6.11c.
Undoubtedly, there is an initial flux , while there is no flux in the final state.
Nevertheless – and as can be verified by experiment – there is no induced EMF.
This may appear like a paradox which represents a contradiction to eq. (6.13).
Essential is, however, that the mentioned flux change is not related to the motion of
the conductor. If we start from the safe grounds of the relation for the locally
induced electrical field
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 ,
then we immediately see that it vanishes everywhere. From Fig. 6.11b, it becomes
clear that during this phase of the process, inside of the magnet  but ,
while outside,  but  (because of the ideal assumption that there is no
leakage of B). Since E vanishes everywhere, so has to vanish the integral .
Thereby, the result of Hering’s experiment which initially appeared to be
paradoxical, now becomes downright self-evident. The seeming paradox is simply
a consequence of using the law of induction in a form (6.13) which is not legitimate
for this particular case.

Eq. (6.13) only applies in situations when the loop during its motion or
deformations maintains its material identity and is penetrated by a uniquely
identifiable flux. This is neither the case for the Unipolar machine nor Hering’s
experiment. Looking back, we could have supposed this because of the spring
contacts, which may have seemed minor. Brushes and sliding contacts require extra
caution. In case of doubt, it is best to go back to the fundamental laws. This is good
advice, not only in the realm of induction, as applying simple recipes and summary
results to complex problems may lead to errors and conflicts in any subject matter.

6.2 Diffusion of Electromagnetic Fields

6.2.1 Equations for E, g, B, A 

When neglecting the displacement current but considering induction, then
Maxwells equations are

(6.19)

(6.20)

(6.21)

(6.22)

To solve these equations requires the following relations
(6.23)

(6.24)
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(6.25)

 shall be location independent factors. Substituting eq. (6.23) in (6.22) while
letting  gives 

 . (6.26)

Using Eqs. (6.19), (6.24), (6.20), (6.25)one finds

 .

Applying (6.26) and the vector identity (5.11) gives

that is

 . (6.27)

Using (6.25) gives

 . (6.28)

In similar manner, for B we obtain from eqs. (6.20), (6.25), (6.19), (6.24), and
(6.21)

that is

 . (6.29)

Since 
 

and with proper gauge choice for A, it follows from (6.29) that

 . (6.30)

Applying the curl on both sides of (6.30) yields again (6.29).
Notice that we obtain the same type of equation for all quantities E, g, B, A.

Of course these quantities are still distinct according to their physical meaning.
Their distinctiveness is, from a formal perspective, not expressed in the equations
themselves, but in their different initial and boundary conditions which are
necessary to solve the equations.
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6.2.2 The Physics of these Equations

In eqs. (6.27) through (6.30), we have found a type of equation that has the same
typical structure for E, g, B, A. This equation is the so-called diffusion equation
and is of paramount importance in physics. It received its name from the fact that
(as a scalar equation), i t  describes the diffusion of particles. From a
thermodynamics perspective, this is a typical behavior of irreversible (entropy
increasing) processes. The formula for heat conduction is of this type. The only
difference between the scalar diffusion equation or the heat equation and
eqs. (6.27) through (6.30) is simply that the current equations are not scalar, but
rather vector diffusion equations. In this context and from a purely formal
perspective, the reader shall be reminded on the discussion about the application of
the -operator (Sect. 5.1). Also note that here, we deal with an irreversible
process, too. Consider the path of a conductor forming a closed loop, where at time

, the conductor shall carry a current. Its conductivity shall be . There shall
be no external voltage source. The initial current may be the result of for example,
an induction or an external voltage source that was shorted after creating the
current (Fig. 6.12). When leaving this circuit all by itself, the current decays over
time. Responsible for this is the resistance (R) of the conductor, which produces
irreversible heat ( per unit of time), as long as the current flows. Because of the
law of conservation of energy, this energy has to be taken from another reservoir,
whose energy content is thereby depleted. This energy is that of the magnetic field.
Thus, current and magnetic field have to decrease. This process ceases when all
available energy was transformed into heat.

The energy principle should allow for the reverse process, as well. By only
considering the energy balance, one can imagine that a current emerges in a closed
conductor loop, while using the required energy from the energy stored in the
temperature of the conductor, which would cool down. This has never been
observed. Besides the first law of thermodynamics (the energy principle, or the law
of the impossibility of a perpetuum mobile of the first kind), there is the second law
of thermodynamics (entropy theorem, or the law of the impossibility of a
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perpetuum mobile of the second kind). It is this second law that does not entirely
prohibit the described process, but declares it as very improbable, so that one can
not expect to actually witness it. The basis of this are probability evaluations of
micro states. In our specific case, it is very improbable that the charges in a
conductor, by pure chance, move in such a way that a macroscopic current results
(by chance shall mean that the motion is not caused by an external field). Much
more likely is that the charges move disorderly with different velocities in all
possible directions, mutually cancelling each other in a spatial and temporal
average. Nevertheless, taking sufficiently accurate measurements (with sufficient
spatial and temporal resolution), will reveal small, fluctuating currents, which are
responsible for the permanent background noise of the macroscopic events. The
problems arising from noise are not only theoretically interesting but also of great
practical importance (for example, because they define the limits of accuracy for
very exact measurements), but this is not the topic of this text. Here, we merely
want to note that the processes described in eqs. (6.27) through (6.30) are
macroscopically irreversible. This irreversibility is formally expressed by the
simple time derivative. Replacing t by -t changes the equation, it is – as it is known
– not invariant against time reversal. In other words, there is a difference whether
time increases or decreases. Therefore, the process can not just run backwards.

The wave equation, which covers electromagnetic waves, will be discussed in
Chapter. 7. Its form for E is

 . (6.31)

The only significant difference to eq. (6.27) is that it contains the second time
derivative. This makes it invariant against time reversal. As we will see, it
describes processes (waves), which may proceed both forward and backward in
time. 

To envision the difference, one might imagine taking a movie of such
irreversible processes (for example diffusion) or reversible processes (for example
waves). Then play those movies backwards. In case of a wave (more precisely: not
attenuated wave, i.e., one that does not irreversibly loose energy) the movie played
backwards describes the same natural situation as the one played forward. On the
other hand, the movie of the irreversible process played backwards would seem
unnatural and very puzzling.

Another remark on the formality of the underlaying mathematics shall be
made: One distinguishes three types of partial differential equations of second
order. They are called elliptic, parabolic, and hyperbolic. All three types are very
important in science, and the formal differences also manifest themselves in
practical significance. That is, these three types of equations describe three
significantly different phenomena. When just considering two independent
variables (x, y or x, t), then the equation 
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is an elliptic equation. From an application perspective, this is a potential equation
(Poisson equation). The equation

 (6.33)

is a parabolic equation. We have called it a (scalar) diffusion equation. The
equation

 (6.34)

is a hyperbolic equation. We recognize in it the just mentioned type of the wave
equation. Summarizing in a table: 

When neglecting field theoretical details, the above discussed example of the
conductor with a decaying current (Fig. 6.12) can be approximated in a summary
description by a simple RL circuit (Fig. 6.13), where

 (6.35)

with the general solution

If  when , then

and 

Equation mathematical term refers to application

(6.32) elliptic equation potential equation

(6.33) parabolic equation. diffusion equation

(6.34) hyperbolic equation. wave equation

∂2ϕ
∂x2
--------- ∂ϕ

∂t
------=

∂2ϕ
∂x2
--------- ∂2ϕ

∂t2
---------=

Fig. 6.13

R

L

RI t( ) L
td

d I t( )+ 0=

I t( ) C R
L
---t– 

 exp=

I I0= t 0=
C I0=



6.2   Diffusion of Electromagnetic Fields 357

 . (6.36)

This results in a decaying current, as the 2nd law of thermodynamics mandates.
Multiplying (6.35) by I gives

 .

Integrating this equation over time yields

 . (6.37)

This is nothing else than the first law of thermodynamics (energy principle),
applied to this problem. Eq. (6.37) states that the heat produced by the current
during the time period 0 through t is

 ,

which is drawn from the magnetic energy reservoir. While there was the initial
energy , at time t only the magnetic energy

remains. The magnetic field, which is produced by the current, decays with the
current.

To describe in detail the process of field diffusion, as it is also referred to
because of the formal analogy to the diffusion process, requires one to solve the
equation

with its corresponding boundary conditions and initial values. This is significantly
more difficult than solving eq. (6.35). The following sections will provide
examples of such boundary and initial value problems (skin effect, eddy currents).
A major mathematical tool is the Laplace transform. A few formulas and theorems
shall be compiled in Sect. 6.3.

6.2.3 Approximations and Similarity Theorems

Before delving into that subject, here we show how a rough, still useful
approximation of diffusion problems can be obtained with hardly any calculation at
all. For instance, insert a conductor suddenly into a magnetic field. Its inside shall
initially be without a field. Once inside the field, it gradually penetrates, diffuses
into the conductor. One would like to approximate how long it will take for the
field to penetrate the conductor (Fig. 6.14).
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The typical length of the conductor (which may be cube shaped) shall be of
the order of magnitude l. The diffusion time shall be approximately . This allows
for a rough approximation of eq. (6.29) in the form

 . (6.38)

This is justified because it is approximately

 .

and

 .

Consequently
 . (6.39)

Rather typical for diffusion processes is, that the time is not proportional to , but
to . This is a consequence of the fact that these processes are a result of random
behavior (stochastic processes). In the case of field diffusion, it is the resistance of
the conductor, which depends on the statistical behavior of charges, i.e., the
collisions which occur statistically.

For comparison, a similar approximation of the wave equation shall be
provided. It will be shown that the wave equation for B is of the form

 . (6.40)

From this follows that 
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 . (6.41)

This expresses a linear relation between  and , as it is typical for orderly
motion. In this context, the velocity corresponds to 

 , (6.42)

which we will later recognize as the propagation velocity (phase velocity) of
electromagnetic waves. The difference between the two relations (6.39) and (6.41),
again, is formally a result of the first and second time derivative. 

One may interpret (6.39) also with respect to the skin effect. For instance, if a
magnetic field is applied to the surface of a conductor for a certain time , then
within this time the field can penetrate into the conductor to a depth . This is the
skin depth which is by (6.39)

 . (6.43)

If the applied field is alternating with the frequency f, then we have

 

i.e., disregarding purely numeric factors, we obtain

 . (6.44)

This formula was obtained in a rather simple manner. The difference with exact
results which are based on detailed calculations and consider boundary conditions
as well as initial values, manifests itself, however, merely in numerical factors,
which are usually unimportant in a first approximation. Nonetheless, the
dependence of the skin depth on , and  is described exactly by above
formula.

To make this transparent and to avoid the need to carry along all these many
coefficients when solving, for example, the diffusion equation for the magnetic
field

 , (6.45)

one introduces dimensionless variables, which is also advantageous for many other
problems. We take the liberty to introduce a more or less arbitrary standard length l
in the following manner:

  t0 εµl  ≈

l t0

l
t0
--- 1
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----------≈

t0
l

l
t0
µκ
------≈

t0
1
f
--≈ 2π

ω
------=

l 1
µκω

---------------≈

µ κ, ω
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∂
∂
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2

∂
∂
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  B x y z t, , ,( ) µκ
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∂ B x y z t, , ,( )=
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 . (6.46)

This simplifies (6.45) to an equation without the parameters  and .

 . (6.47)

The advantage of introducing dimensionless variables by eqs. (6.46) is that once a
problem of a certain kind was solved for specific values of  and , then by
similarity transformation (changing the scale factor) in conjunction with (6.46),
allows one to solve problems with different values of these parameters. It is said
that the results are scalable, or that it is possible to provide similarity laws. Because
of the freedom to choose the length l, we may reduce the behavior of fields in
similar conductors of different expansion by similarity transformation onto each
other. 

6.3 Laplace Transform

The Laplace transform is oftentimes a very helpful tool to solve initial value
problems. In the theory of circuits, this approach is used to reduce ordinary
differential equations, whose independent variable is the time, to algebraic
equations. In field theory, the equations are partial differential equations, for
example in x, y, z, and t. Applying the Laplace transform results in a new partial
differential equation in x, y, and z, where the initial values are automatically
considered. This reduces the problem to a spatial boundary value problem, which
can be solved using the methods introduced in Chapter 3. In the simplest case, the
spatial problem is one dimensional, for example, x-dependent (planar) or r-
dependent (cylindrical). In this case, the Laplace transform reduced the original
partial differential equation to an ordinary differential equation in x or r.
Now, we will compile a list of important relations about the Laplace transform,
whereby no explanation or derivation is provided. More over, no attempt for
completeness will be made. 

The (one sided) Laplace transform of  for a function  is defined by

 . (6.48)

ξ x
l
--=

η y
l
--=

ζ z
l
--=

τ t
t0
--- t

µκl2
-----------= =















µ κ

ξ2

2

∂
∂

η2

2

∂
∂

ζ2

2

∂
∂+ + 

  B
τ∂

∂B=

µ κ

 f̃ p( )  f t( )

  f̃ p( )  f t( ) pt–( )exp t  d
0

∞
∫=



6.3   Laplace Transform 361

L shall serve as the symbol to represent the Laplace transform of a time dependent
function and L-1 shall represent the inverse Laplace transformation. Thus, we will
frequently write

 , (6.49)

or
 . (6.50)

p is a complex number. Of course, all this depends on the existence of the integral
on the right side of (6.48), which shall not be our concern here, however. 

A few pairs of related functions of  and  are listed in table 6.1.
Some of these can be found immediately by applying (6.48), some will be
discussed in conjunction with solved problems in subsequent sections. There are
also a number of tables for the Laplace transform. A particularly detailed table for
both the Laplace transform and its inverse can be found in [5] volume 1.

Particularly important in the context of initial value problems is, that for the
n-th time derivative of a function  the following relation holds:

L f t( ){ }  f̃ p( )=

L 1–  f̃ p( ){ }  f t( )=

 f̃ p( )  f t( )

Table 6.1

Convergence region

1

time shifting theorem

 f t( ) L 1–  f̃ p( ){ }=  f̃ p( ) L f t( ){ }=

tα α!
pα 1+
------------- ℜe p{ } 0>
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ωt( )sin
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p2 ω2+
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ωt( )cos
p

p2 ω2+
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αt( )exp 1
p α–
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1
4πt

------------ x2

4t
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 exp
1

2 p
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x
4πt3
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 exp x p–( )exp ℜe p{ } 0≥
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
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 (6.51)

Here,  is the first, , the second, , the n-th time derivative of
 for . This can be proven by continuously integrating (6.48) by parts.

This still holds for the following relation, 

 , (6.52)

which is used to transform multiple time integrals. Apart from the terms ,
, etc., which represent the initial values, every differentiation creates another

factor p and every integration a factor . This highlights in a striking expression
the fact, that integration and differentiation are mutually inverse operations. It also
illustrates that, or how, the Laplace transform under certain conditions reduces
differential and integral equations to algebraic ones. 

The convolution or faltungs theorem shall prove itself useful shortly. Consider
two time dependent functions  and  with their Laplace transform

 and . The integral 

 (6.53)

is the so-called convolution integral of the two functions  and . Its
Laplace transform can be shown to be

 . (6.54)

When solving a problem by means of the Laplace transform, we obtain a
result in the p-domain. To get the solution in the time domain, an inverse
transformation is necessary. In simple cases, this can be achieved by finding the
transform in a table. In general, the inverse needs to be calculated. The formula for
inversion is an integral in the complex p-plane, and one can prove by means of
equations known from the Fourier transform that:

 . (6.55)

This is called the Fourier-Mellin theorem. Fig. 6.15 shows the complex p-plane
with the integration path from  to , which runs at a distance 
parallel to the imaginary axis. The path has to be chosen such that it is to the right
of all poles of . This means that there is not a complete freedom in the choice
of . Function theory is frequently used to evaluate the inversion integral (6.55). If
the integrand vanishes at infinity, then the integral (6.55) can be replaced by one
around a closed loop as shown in Fig. 6.16. The path closes at infinity but does not
add to the integral. 
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The integral is then:

 . (6.56)

This integral can be evaluated with complex analysis, by accounting for all poles
inside the closed contour C (Fig. 6.16). One way is to add all residues of the
integrand. This requires explanation of a few terms from function theory, complex
analysis in particular. Consider an annular domain in the complex z-plane, centered
around the point . If a function is analytic in that domain, then it has a series
representation of the form

, (6.57)

which is the so-called Laurent series. If there are terms with negative exponents of
n (i.e., n<0), then  diverges for  and  is said to have a singularity
at . If there are an infinite number of such terms, then the singularity is said
to be an essential singularity. If the series ends with the term  (i.e.,

 and  for all ), then the singularity is called a pole of
order m. The coefficient  of this Laurent series is very special. It is called the
residue of the function  at the point . The significance of the residue

 (its name suggests that it remains) stems from the fact that the integral for any
positively oriented closed contour is

 , (6.58)

as long as the path encloses . If a path includes several poles , then the values
of all residues need to be added:

 . (6.59)

This allows one to reduce the inverse Laplace transform to finding all residues of
all poles and essential singularities. With (6.56) and (6.59) one can write
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 . (6.60)

This requires to find all singularities and their residues. The Laurent series (6.57)
shows that a residue of  for a pole of order 1 can be written as 

 . (6.61)

For a pole of order m, the Laurent series tells us that 

 . (6.62)

In case of an essential singularity, i.e., when m is infinitely large, then
eq. (6.62) does not help. In this case we have to go back to the Laurent series itself.
Frequently, if , but  or , then l’Hospital’s
rule 

 , (6.63)

is a useful tool to determine the necessary limits to find the residues according to
(6.61) and (6.62). However, if  and , then the procedure may
be repeated:

 , (6.64)

etc.

6.4 Field Diffusion in the Two-sided Infinite Space

We will investigate the behavior of a magnetic field  in a uniformly
conductive material ( ). It satisfies the diffusion equation

 . (6.65)

Using the dimensionless time

 (6.66)

and the dimensionless spatial coordinate 

 , (6.67)

where as before,  is an arbitrary length, then

 . (6.68)

A solution to this equation is for example, 
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 , (6.69)

which can easily be verified by substitution. The solution also makes physically
sense because it remains finite for both , as well as for  (it
vanishes). This is a Gaussian curve. Its width depends on the elapsed time, more
precisely, it widens for increasing times. For small times, the curve is narrow and
very high. Its integral from  to  is constant ( ) for all times

 . (6.70)

Disregarding the factor , for   this expresses a δ-function, which can be
defined as the limit of a Gaussian curve (see Sect. 3.4.5):

 , (6.71)

and therefore
 . (6.72)

Consequently, according to (6.69),  is the solution to the diffusion problem
in the infinite space with the initial condition given by (6.72). The initially closely
localized field flows gradually more and more apart (Fig. 6.17). From a formal
perspective, this behavior is entirely analogous to the theory of heat conductivity.
The special solution given here gives us – and this makes it so significant – the
solution to much more general problems. If the initial field is given in an arbitrary
shape

 , (6.73)

then we can find its solution by the superposition of many δ-functions:

 . (6.74)

That is, the initial field consists of pieces of the form
 . (6.75)

The contribution of such a piece at a later time is

 . (6.76)

The overall field results when superposing all the contributions, i.e., the integral
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 , (6.77)

or when returning to the quantities with dimensions x and t:

 . (6.78)

The relation, expressed in the form of (6.77) or (6.78) is of paramount interest
because it describes the problem in full generality for every initial condition.

 is obtained, so to speak, out of  by an integral transform, where
the solution belonging to the δ-function as initial condition (6.69), serves as the
integral kernel. It is Green’s function for this problem.

Equation (6.74) can be regarded as the expansion of the function  by the
complete orthogonal and normalized systems of functions . The
orthogonality relation is

Fig. 6.17
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 .

Applying the Ansatz

yields
 ,

i.e., the coefficient function results in the expanded function itself, which is nothing
more than an unfamiliar, however useful, interpretation of the defining property of
the δ-function. If the problem is solved for a basis function, then it is solved for any
function that can be expanded as a series of this base. This is the reason why the δ-
function allows one to find the Green’s function for the problem.

There is another approach, that is more systematic. We just gave the specific
solution (6.69), which is not very satisfying. Now, we want to derive a solution
starting from initial values and boundary conditions. For that purpose, we now
analyze , rather than . Then we use (6.51) and (6.68) to obtain

 , (6.79)

i.e., the partial differential equation in  and  becomes an ordinary differential
equation in  and the initial condition is already included. The task is to find the
solution that remains finite for both  and . Those are the
necessary boundary conditions (which are oftentimes implicitly assumed) to make
the solution unique. The general solution to (6.79) results from adding the solution
of the related homogeneous equation to a specific solution of the inhomogeneous
equation. 
The special solution is derived from the solution of the homogeneous equation by
means of method variation of parameters. Leaving out the details, the general
solution of (6.79) is

 

(6.80)

The integral is a special solution of the inhomogeneous equation (6.79). The lower
boundary may be replaced by an arbitrary constant. Such a new integral is, again, a
solution of the inhomogeneous equation. On the other hand, the difference between
the two integrals is a solution of the homogeneous ordinary differential equation.
This means that it can be expressed by a suitable superposition of the two integrals.
In other words, the solution (6.80) remains unchanged when changing the lower
boundary of the integral, when simultaneously changing the coefficients  and

 in a suitable manner. 
In particular, if
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 , (6.81)

then letting  gives

 (6.82)

To prevent that  diverges for  requires that 
 . (6.83)

For very large values of  we have

 . (6.84)

To prevent that  diverges for  requires that 

 . (6.85)

With (6.82), (6.83), and (6.85), we finally obtain

 . (6.86)

Writing the absolute value of the difference  allows one to omit the
distinction of the two equations that initially result from using (6.82), where 

 (6.87)

For symmetry reasons, a result of the form as of (6.86) can be expected because the
field has to behave in the same way left and right of . Therefore, the result
may only depend on . Returning to the time domain, when using (6.86)
gives

 . (6.88)

The reason is that 

 . (6.89)

The result (6.88) is consistent with our previous result (6.69), which we now have
derived in a systematic manner. The general solution (6.77) follows from (6.88) as
before.
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6.5 Diffusion of a Field in a Half-Space

6.5.1 General solution

The next problem we shall discus, is the field diffusion in the half-space 
(Fig. 6.18). Again, this is given by the solution of the equation

 , (6.90)

where the boundary conditions are now
 . (6.91)

 , (6.92)

and the initial condition is
 . (6.93)

As before, for  we use (6.79)

 , (6.94)

with the general solution similar to (6.80),

(6.95)

Only the lower boundary of the integral (6.80) was changed from  to
. The reason is that this problem only deals with the positive half-space.

Again, we choose 
 , (6.96)

and in analogy to (6.82) one obtains
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(6.97)

From this and the two boundary conditions (6.91) and (6.92), it follows that
 (6.98)

and

 , (6.99)

entirely in accordance with (6.85). Eliminating  from (6.98) yields

 . (6.100)

Finally, with (6.97), (6.99), and (6.100), one obtains the solution to our problem in
the p-domain:

 (6.101)

The result needs to be interpreted. We will examine each of the two terms of
 individually, since each represents an entirely different cause. If ,

that is, there is no initial field ( ), then 
 . (6.102)

This equation describes the fraction of the field which diffuses from the surface
into the half-space due to the boundary condition at . It shall be explained in
Sect. 6.5.2. Conversely, if  while , then

 . (6.103)

This represents the fraction that stems from the initial condition and which satisfies
the boundary condition  at the surface . It will be discussed in
Sect. 6.5.3.

6.5.2 Field Diffusion from the Surface into a Half-space (Impact of 
the Boundary Conditions)

If we remove the fraction of the field that is introduced by the initial condition,
what remains is

 . (6.104)
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Let us start with the special case of a δ-function
 . (6.105)

Then

 (6.106)

and 
 . (6.107)

This can be transformed back into the time domain (see table 6.1)

 (6.108)

This is the solution to the problem of a very strong field, acting very briefly at the
surface at the time . Now, we consider the general boundary condition ,
which can be assumed as the superposition of many δ-functions:

 . (6.109)

Each one expands according to the result in (6.108), with the final result

 (6.110)

or

 . (6.111)

With this, we have reduced the problem of a completely general boundary
condition to an integral transform, which maps the field at the surface onto the field
inside. It achieves this by means of Green’s function given in eq. (6.108). 

Notice that we have initially chosen a δ-function as the boundary condition
and then obtained the solution (6.110) by superposing many δ-functions. One could
have chosen a more formal approach, deriving (6.110) directly from (6.104) by
means of the convolution theorem (6.53), (6.54). This is justified because of (see
Tab. 6.1)

 . (6.112)

 f τ( ) B1δ τ τ'–( )=

 f̃ p( ) B1 δ τ τ'–( ) pτ–( )exp τd
0

∞
∫ B1 pτ'–( )exp= =

B̃z ξ p,( ) B1 pτ'– pξ–[ ]exp=

Bz ξ τ,( )

0                               for τ τ'<

B1ξ ξ2

4 τ τ'–( )
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2 π τ τ'–( )3
--------------------------------------------------       for 0 τ' τ .<≤









=

τ'  f τ( )

 f τ( ) f τ0( )δ τ τ0–( ) τd
0

∞
∫=

  Bz ξ τ,( ) f τ0( )
ξ ξ2

4 τ τ0–( )
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2 π τ τ0–( )3
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0

τ
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  Bz x t,( ) f t0( )
x µκ x2µκ
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2 π t t0–( )3
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0

t
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L 1–  pξ–( )exp{ }
ξ ξ2

4τ
----- –exp

2 π τ3
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Before, we performed the superposition task in an intuitive way. Now, the
convolution theorem does the job of supperpositioning the individual δ-impulses,
which makes up the function . Eq. (6.110) describes the field’s spatial and
temporal progress in the half-space for an arbitrary field given at the surface, if the
half-space is initially field free. Let us consider the simple example of a field that
increases step-like, at time  and then remains constant:

 (6.113)

The field is then

 . (6.114)

Introducing the new variable u 

 , (6.115)

makes

 , (6.116)

and substituting gives

 

and with natural dimensions

 . (6.117)

Here, we have introduced the so-called error function (erf) (Fig. 6.19) and its
complementary function the error function complement (erfc):

 f τ( )

τ 0=
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

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Bz ξ τ,( ) B0
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--------------------- –exp

2 π τ τ0–( )3
--------------------------------------------- τ0d

0

τ
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u ξ
2 τ τ0–( )
--------------------------=

du
τ0d

------- ξ

4 τ τ0–( )3
----------------------------=

Bz ξ τ,( ) B0
2
π

------- u2 –[ ]exp ud
ξ 2 τ⁄

∞
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 B0
2
π

------- u2 –[ ]exp ud
0

∞
∫ u2 –[ ]exp ud

0

ξ 2 τ⁄
∫–=

Bz ξ τ,( ) B0 1 2
π

------- u2 –[ ]exp ud
0

ξ 2 τ⁄
∫–=

 B0 1 erf ξ
2 τ( )
-------------- 

 –=

 B0erfc ξ
2 τ
---------- 

 =

Bz x t,( ) B0erfc x µκ
2 t

------------- 
 =
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 (6.118)

 . (6.119)

These describe how the field, applied to the surface at time  and held
constant thereafter, penetrates the half-space (Fig. 6.20). It is remarkable and an
example for the above mentioned similarity theorems (Sect. 6.2.3), that the field
only depends on  and not on the parameters  and  individually. The
field maintains its principal shape at all times (Fig. 6.20), Stretching more and
more as time increases. When

 

the value for erfc is

 .

In a rough estimate, it can be stated that within the time , the field  has only
reached as far as to the location 

 , (6.120)

Fig. 6.19
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its half width. When returning to the variables with natural dimensions x and t, then
with (6.66) we find how far the field (more precisely half of the field) has
penetrated the half-space

 , (6.121)

and the time it takes to do so is
 . (6.122)

This complies with our previous estimates (6.39) and (6.43). This simple example
shall be sufficient for us here, but we will return in a later section (Sect. 6.5.4) to
discuss the problem of the skin effect for the case of a field or current, periodic in
time.

6.5.3 Diffusion of the Initial Field in the Half-Space (Impact of Initial 
Values)

The field according to (6.103) is

 . (6.123)

We examine the second term first. We know it very well from Sect. 6.4, eq. (6.86).
The related time function according to (6.88) is

 . (6.124)

The first term in (6.123) is of the same kind, at least concerning its effect in the
region , . It describes a field in the positive half-space, which one can
picture as a δ-function-like initial field at location :

 . (6.125)

The two fields mutually cancel at , which satisfies the boundary condition
there. This is an example of an “image” field, which is necessary to satisfy the
boundary conditions. Nevertheless, this image field is of a different kind than
previous images. In the positive half-space at the time , one has the field

 (6.126)

and in the negative half-space ( ), we have the field
 , (6.127)

which is, of course, of fictitious nature.

x t
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2 p
-----------------------------------------------------

B0 p ξ ξ'––[ ]exp

2 p
-----------------------------------------------+=

Bz ξ τ,( ) B0

ξ ξ '–( )2
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Both fields widen with increasing time to Gaussian curves ((Fig. 6.21). The
overall field at the time τ in the positive half-space is 

 . (6.128)

In the negative half-space, this field is only fictitious. The real field there is
actually zero . If there is an arbitrary initial field , then we need to add
all fractions (in analogy to the discussion of Sect. 6.4). 

 . (6.129)

This represents the general solution of the current problem. 
Consider a simple, special case as an example:

 . (6.130)

Substituting 

 (6.131)

and

 (6.132)

gives

Fig. 6.21
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i.e., 

 . (6.133)

This must be so. It should be easy to see that the resulting field here has to
complement the previously calculated field (6.117) in such a way, that the sum
gives . If there is an initial field  inside and a field  is applied on the
surface also, then there is the same field everywhere and nothing will happen. If
there is no field applied on the boundary, then eq. (6.133) describes how the field in
the half-space decays. The progression always happens in a similar manner
(Fig. 6.22).

6.5.4 Periodic Field and Skin Effect

Returning to the subject of Sect. 6.5.2, we apply a field, periodic in time to the
surface of the half-space. Complex notation is particularly useful here to simplify
periodic processes. We write

 . (6.134)

The real part represents the physical field  at the surface. Then

 (6.135)

and with (6.104)

Bz ξ τ,( )
B0

π
-------– u2 –[ ]exp ud

ξ 2 τ⁄

∞–
∫ u2 –[ ]exp ud

ξ 2 τ⁄

+∞
∫+

 
 
 

=

 
B0

π
------- u2 –[ ]exp ud

∞–

ξ 2 τ⁄
∫ u2 –[ ]exp ud

ξ 2 τ⁄

+∞
∫–

 
 
 

=

 
2B0

π
--------- u2 –[ ]exp ud

0

ξ 2 τ⁄
∫ B0erf ξ

2 τ
---------- 

 = =

Bz x t,( ) B0erf x µκ
2 t

-------------- 
 =

Fig. 6.22

Bz B0erf ξ
2 τ
---------- 

 =

Bz
B0

Bz 0= ξ
2 τ
---------

B0 B0 B0

Bz 0 τ,( ) f τ( ) B0 Ωτ( )cos i Ωτ( )sin+[ ] B0 iΩτ( )exp= = =

B0 Ωτ( )cos

 f̃ p( )
B0

p iΩ–
---------------=



6.5   Diffusion of a Field in a Half-Space 377

 . (6.136)

 is the dimensionless angular frequency, where 

 

or
 . (6.137)

The before mentioned table of Laplace transforms [5] contains the transform of
(6.136) into the time domain. 

 . (6.138)

For very large times ( ) 

 

 

 

and therefore the real physical field in the half-space is

 . (6.139)

The field given by (6.139) remains, after the effects from the initial conditions have
subsided (here, this is the field that vanishes at the beginning). The remaining field
represents the so-called steady state. It alone would not satisfy the initial conditions
at . A different initial condition would cause additional terms which would
decay over time. The steady state will always be the one given by (6.139). The
steady state shall occupy us for now. It shares the periodicity with the applied field,
however, there is a spatial dependent phase shift and the amplitude decreases
(damping) towards the inside of the half-space. Intuitively, both are to be expected.

If the interest is only in the steady state, it can be calculated rather easily. The
starting point is 

 (6.140)

and the solution has to consist of exponential functions, therefore we try the Ansatz
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. (6.141)

This requires 
 

or

 . (6.142)

Thus, there are two solutions:

. (6.143)

Only the sign on the top provides solutions which make physical sense. The bottom
sign would cause a field which diverge for . Although this is a
mathematically correct solution, one excludes it because Physics does not allow for
such a field. Therefore, the field is given by:

 . (6.144)

Both, the real part as well as the imaginary part can be regarded as solutions. The
real part just represents the previous solution of eq. (6.139). Returning to variables
with dimensions, the field becomes

 . (6.145)

The phase is constant when

 

that is, for 

 

 . (6.146)

This is the phase velocity, which represents the velocity with which the wave
starting at the surface penetrates the half-space. The penetration depth, i.e., the
distance at which the amplitude has fallen to  is given by

or

 . (6.147)
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With the exception of the factor , this is in entire harmony with our previous
approximation (6.44). However, because of the very rough approximation in
Sect. 6.2, which did not take into account the geometry of the set-up, we could not
have expected an exact result.
From

 
follows for the corresponding current 

 

 , (6.148)

where the trigonometric identity

 ,

was used. The time average of the squared current density is

 . (6.149)

This allows one to determine the average power that is transformed per unit of the
surface of the half-space.

 

 . (6.150)

According to (6.148) one writes

 (6.151)

and therefore, one gets for the overall current per unit length on the surface 

 . (6.152)

Squaring this and then taking the time average gives

 . (6.153)

Imagine that this current flows according to eq. (6.147) within the depth d, then the
related power per unit area is
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 . (6.154)

This just describes the power calculated in eq. (6.150), which conjures up a
scenario where the entire, effective current, flows with a uniform current density in
a layer at the surface of thickness d. Fig. 6.23 compares for example for the time

 the actual current distribution (Fig. 6.23a) with that of our model
distribution (Fig. 6.23b). 
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6.6 Field Diffusion in a Plane Plate

6.6.1 General Solution

Now, we discuss the problem of a plane plate of thickness d, as illustrated in
(Fig. 6.24). Then one has to solve the diffusion equation

 (6.155)

with the boundary conditions
 (6.156)

 (6.157)

and the initial condition
 (6.158)

Here, one replaces the arbitrary length l by the thickness of the plate d, i.e., 

 (6.159)

and

 . (6.160)

For , the formula (6.94) applies again

 . (6.161)

Its general solution by eq. (6.95) is

.

(6.162)

Fig. 6.24
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In the p-domain, it has to satisfy the boundary conditions given in (6.156) and
(6.157).

 (6.163)

 . (6.164)

This determines the constants  and , and the final result in the p-domain is

 . (6.165)

The field has three parts which we will discuss separately. The three parts are due
to the two boundary conditions and the initial condition. It is possible to verify the
correctness of this solution by substituting it into (6.161). That the boundary
conditions (6.163) and (6.164) are satisfied can also be verified by inspection. 

6.6.2 Diffusion of the Initial Field (Impact of Initial Condition)

We start our discussion with the last part, i.e., the two terms of (6.165) which stem
from . As we have found before, it is sufficient to study the special case 

 . (6.166)

The reason is that the general case can be reduced to this special case. Without the
terms with  and , the field becomes

 (6.167)

where we have used the relation

 .

Transforming eq. (6.167) back into the time domain yields

 . (6.168)
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Its proof shall be postponed until the end of this section. Now, one can write the
general solution for an arbitrary initial field

 . (6.169)

This result is in the form of a Fourier series. One could have derived this without
the Laplace transform, had we chosen to start with an Ansatz of the form of a
Fourier series. One can verify by inspection that eq. (6.169) solves our problem.
First, every term satisfies the partial differential equation (6.155) and the boundary
conditions  for  and . Furthermore, for the time ,
the field is

 , (6.170)

that is, it satisfies the initial condition. 
As specific example, consider

 , (6.171)

for which one first finds

(6.172)

and therefore

 . (6.173)

The result is in the form of an infinite series and converges extremely well if the
time is not too small. For a sufficiently large times, the first term of the series
already represents a rather useful approximation. For 

 (6.174)

or 

 , (6.175)

one has

 , (6.176)

that is, the field behaves as indicated in Fig. 6.25. Conversely, for small times, the
series does not converge well. On a side note, it shall be mentioned that this series
is closely related to the so-called θ-functions. There are relations between
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θ-functions that allow one to transform poorly converging series into well
converging series. 

Now, we return to the above announced proof of (6.167) and (6.168), where it
was claimed that

 . (6.177)

It may be sufficient to prove one of the two cases. Let us pick the case . This
equation meets the requirements to apply the residue theorem to find the inverse
Laplace transform (see Sect. 6.3). According to (6.60), we need the residues for 

 . (6.178)

Using
 , (6.179)

one might as well write

 . (6.180)

The zeros of the denominator are at
 . (6.181)

However, notice that there is no pole for , i.e. , as the nominator also
vanishes with  and the limit  has a finite value. The
poles are therefore at

 . (6.182)
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 . (6.183)

These are poles of order 1. There are no other poles. Its residues are

 .

This requires l’Hospital’s rule (6.63), by which we find

 , (6.184)

and its residue is

 . (6.185)

Summing all these residues from  through  totals to exactly what
was claimed in (6.177).

6.6.3 Impact of Boundary Conditions

Now we study the impact of the boundary conditions at  and  (this
relates to  and , respectively). The first two parts from (6.165)
responsible for the boundary conditions are

 . (6.186)

The convolution theorem shall be used to find the solution in the time domain, if
we are able to find the inverse Laplace transform of the two functions 

 .

and

 .

Both have poles of order 1 at 
 (6.187)

or
 . (6.188)

Again, there is no pole for  because both functions are finite there. Now one
needs to find the residues for 

p n2– π2, = n 1≥

Rn
i– nπξ( )sin nπ 1 ξ'–( )[ ]sin n2π2τ–[ ]exp

nπ
i

------ i p[ ]sin
--------------------------------------------------------------------------------------------------- p n2π2+( )

p n2π2–→
lim=

p n2π2+
i p[ ]sin

---------------------
p n2π2–→

lim 1
i

2 p
---------- i p[ ]cos
---------------------------------

p n2π2–→
lim     2nπ

nπ( )cos
-------------------–= =

Rn
2– nπξ( )sin nπ( )sin nπξ'( )cos nπ( )cos nπξ'( )sin–[ ] n2π2τ–[ ]exp

nπ( )cos
------------------------------------------------------------------------------------------------------------------------------------------------------------------=

             2 nπξ( )sin nπξ'( )sin n2π2τ–[ ]exp=
n 1= n ∞=

ξ 0= ξ 1=
x 0= x d=

B̃z ξ p,( ) f̃1 p( ) p 1 ξ–( )[ ]sinh
p[ ]sinh

--------------------------------------- f̃2 p( ) pξ[ ]sinh
p[ ]sinh

--------------------------+=

p 1 ξ–( )[ ]sinh
p[ ]sinh

--------------------------------------- i p 1 ξ–( )[ ]sin
i p[ ]sin

---------------------------------------=

pξ[ ]sinh
p[ ]sinh

------------------------- i pξ[ ]sin
i p[ ]sin

------------------------=

i p nπ, = n 1≥

p n2– π2, = n 1≥
p 0=
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 (6.189)

and

 . (6.190)

For the first case it is

and by (6.184)

 . (6.191)

In like manner, one finds for the second case:

 . (6.192)

The residues of (6.191) belong to the function of (6.189) and the residues of
(6.192) belong to the function (6.190). This enables one to write:

 , (6.193)

 . (6.194)

In principle, one of the formulas is sufficient because they are equivalent since

.
Using this, the convolution theorem (6.54), and eq. (6.186), i.e. for

, yields

i p 1 ξ–( )[ ]sin pτ( )exp
i p[ ]sin

-----------------------------------------------------------

i pξ[ ]sin pτ( )exp
i p[ ]sin

---------------------------------------------

Rn
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--------------------------------------------------------------------- p n2π2+( )

p n2π2–→
lim=

Rn
2– πn nπ 1 ξ–( )[ ]sin n2π2τ–[ ]exp

nπ( )cos
----------------------------------------------------------------------------------=

    2– πn nπ( )sin nπξ( )cos nπ( )cos nπξ( )sin–[ ] n2π2τ–[ ]exp
nπ( )cos

------------------------------------------------------------------------------------------------------------------------------------------------=

Rn 2nπ nπξ( )sin n2π2τ–[ ]exp=

Rn
nπξ( )sin n2π2τ–[ ]exp

i p[ ]sin
------------------------------------------------------- p n2π2+( )

p n2π2–→
lim=

    2– πn nπξ( )sin n2π2τ–[ ]exp
nπ( )cos

---------------------------------------------------------------------=

Rn 2nπ 1–( )n nπξ( )sin n2π2τ–[ ]exp–=

  L 2nπ nπξ( )sin n2π2τ–[ ]exp
n 1=

∞
∑

 
 
  p 1 ξ–( )[ ]sinh

p[ ]sinh
----------------------------------------  =

  L 2– nπ 1–( )n nπξ( )sin n2π2τ–[ ]exp
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∞
∑

 
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or slightly rewritten

 (6.195)

This solves the problem for arbitrary boundary conditions. The solution of the
overall problem is the result of adding all contributions resulting from the initial
condition (6.169) and all contributions due to the just calculated boundary
conditions (6.195). 

It is time for a simple example. The boundary conditions shall be
 (6.196)

 (6.197)

Their Laplace transform is
 (6.198)

 , (6.199)

and therefore with (6.186)

 . (6.200)

This problem can be solved by the inverse transform of (6.200) as well as by
applying (6.195). We shall do both. First, the inverse transform of (6.200) is carried
out in a similar way as in the previous example. The difference is essentially that
now, there is also a pole at  and all the other residues have an additional
factor in the denominator of . The residue of 

at the pole  is

and the overall result is therefore

Bz ξ τ,( ) f1 τ0( ) 2nπ nπξ( )sin n2π2 τ τ0–( )–[ ] τ0dexp
n 1=

∞
∑0

τ
∫=

                    f2 τ0( ) 2nπ 1–( )n nπξ( )sin n2π2 τ τ0–( )–[ ] τ0dexp
n 1=

∞
∑0

τ
∫–

  Bz ξ τ,( ) 2 nπ nπξ( )sin n2π2τ–[ ]exp
n 1=

∞
∑=

                  f1 τ0( ) 1–( )nf2 τ0( )–[ ] n2π2τ0[ ] τ0 .dexp
0

τ
∫⋅

 f1 τ( ) 0=

 f2 τ( )
B2

0



= for 
τ 0  ≥
τ 0 .<

 f̃1 p( ) 0=

 f̃2 p( )
B2
p

------=

B̃z ξ p,( )
B2
p

------ pξ[ ]sinh
p[ ]sinh

-------------------------=

p 0=
p n2π2 n 1≥( )–=

B2
p

------ pξ[ ]sinh
p[ ]sinh

-------------------------- pτ( )exp

p 0=
R0 B2ξ=
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 . (6.201)

Now, taking the other approach, using eq. (6.195) as staring point, then

 .

This is the same result as before, where it is to be noted that

 . (6.202)

The proof can be provided by means of eqs. (3.118) and (3.120). We conclude that
both methods produce the same result. There is another way to understand this. For
the limit of large times, it is

 (6.203)

or

 . (6.204)

The consequence is that since the boundary conditions (6.196) and (6.197) are time
independent, that for large times the field has to be time independent. This means
that is must be

 . (6.205)

Its general solution is
 . (6.206)

It follows from (6.196) that

Bz ξ τ,( ) B2ξ 2B2
1–( )n nπξ( )sin n2π2τ–[ ]exp

nπ
---------------------------------------------------------------------

n 1=

∞
∑+=

Bz ξ τ,( ) 2 nπ nπξ( )sin n2π2τ–[ ]exp
n 1=

∞
∑=

 B2 n2π2τ0[ ] τ0 1–( )n–[ ]dexp
0

τ
∫⋅

             2B2 nπ nπξ( )sin n2π2τ–[ ] n2π2τ[ ]exp 1–
n2π2

-------------------------------------- 1–( )n–[ ]exp
n 1=

∞
∑=

Bz ξ τ,( ) 2B2 1–( )n nπξ( )sin
nπ

----------------------–
n 1=

∞
∑=

                      2B2 1–( )n nπξ( )sin n2π2τ[ ]exp
nπ

----------------------------------------------------
n 1=

∞
∑+

Bz ξ τ,( ) B2ξ 2B2 1–( )n nπξ( )sin n2π2τ[ ]exp
nπ

----------------------------------------------------
n 1=

∞
∑+=

ξ 2 1–( )n nπξ( )sin
nπ

----------------------–
n 1=

∞
∑= for -1<ξ +1<

Bz ξ τ,( )
τ ∞→
lim B2ξ=

Bz x t,( )
t ∞→
lim B2

x
d
--=

x2

2

∂
∂ Bz x( ) 0=

Bz x( ) ax b+=
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 , (6.207)

and from (6.196) follows that

 , (6.208)

which leads to the solution (6.204). The complete solution (6.201) describes how
the steady state (6.204) is gradually achieved. This is illustrated qualitatively in
Fig. 6.26. If one considers the current, for which one can write:

 . (6.209)

Initially, there is a surface current

 , (6.210)

which gradually spreads out in order to uniformly occupy the entire available space
in its final state, the steady state:

 . (6.211)

The overall current per unit length remains unchanged

 . (6.212)

It is fixed by the boundary conditions chosen in this example.

6.7 The Cylindrical Diffusion Problem

6.7.1 The Basic Formulas

We will now focus on problems that are important for practical applications, but
nevertheless represent very simple specific cases, such as the skin effect in a

b 0=

a
B2
d

-----=

Fig. 6.26

x
t 0=x 0= x d=

B2

t ∞=

BZ

gy x t,( )
x∂

∂ Hz x t,( )– 1
µ0
-----

x∂
∂ Bz x t,( )–= =

gy
B2
µ0
------ δ x d–( )–=

gy
B2

µ0d
---------–=

I
l
- gy x( ) xd

0

d
∫

B2
µ0
------–= =
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cylindrical wire. The wire considered, is to be infinite in length and rotationally
symmetric (i.e. a circular) cylinder. The magnetic field which surrounds it, or is
present inside depends only on r. Consequently, all derivatives of ϕ and z have to
vanish. The requirement that B has to be source free leads under these
circumstances to the condition that the radial component  has to vanish.
Otherwise, it would diverge at the axis. Eq. (3.32) gives

 , (6.213)

from which it follows that

 . (6.214)

Therefore, 
 . (6.215)

The diffusion equation 

 (6.216)

for the assumptions made here and with (5.14) becomes

 (6.217)

 . (6.218)

Thus, we have to solve different equations for  and . Subsequently, we will
discuss the field components separately. To simplify, we will limit our discussion to
a solid, circular cylinder of radius . We further simplify the problem by
assuming a vanishing initial field,

 . (6.219)

It shall be noted that the general initial value problem with an arbitrary initial field
can be solved without particular difficulties, for example, by expanding the initial
field into a Fourier-Bessel series. The boundary conditions for our problem are

(6.220)

 . (6.221)

We Introduce again the dimensionless variables
 (6.222)

and

 . (6.223)

The equations for  and  read now:

Br

B∇• 1
r
--

r∂
∂ rBr( ) 0= =

Br
const.

r
-------------=

B 0 Bϕ r t,( ) Bx r t,( ), ,〈 〉=

∇2B µκ
t∂

∂B=

1
r
-- 

r∂
∂ r 

r∂
∂ 1

r2
----– 

  Bϕ r t,( ) µκ
t∂

∂ Bϕ r t,( )=

1
r
-- 

r∂
∂ r 

r∂
∂

 
  Bz r t,( ) µκ

t∂
∂ Bz r t,( )=

Bϕ Bz

r0

B r t,( )[ ]t o= B r 0,( ) 0= =

B r t,( )[ ]r r0= B r0 t,( ) f t( )= =

B r t,( )[ ]r 0= B 0 t,( ) finite= =

x r r0⁄=

τ t
µκr0

2
------------=

Bϕ Bz



6.7   The Cylindrical Diffusion Problem 391

 (6.224)

 , (6.225)

with the initial condition 
 (6.226)

and the boundary conditions
 (6.227)

 . (6.228)

This is the form for which eqs. (6.224) and (6.225) have to be solved – now, with
the conditions (6.226) through (6.228). We will first solve for the longitudinal field

, and thereafter for the azimuthal field .

6.7.2 The longitudinal Field Bz

Consider an infinitely long cylinder in a space where a uniform magnetic field is
created, that is, the field is oriented parallel to the cylinder axis: 

 (6.229)

If there is no field initially in the cylinder, then one has to solve the above specified
problem. Instead of immediately solving for , we introduce its Laplace
transformed field  and then, from (6.225) with the initial condition
(6.226), we obtain the equation

 , (6.230)

and the boundary conditions in the p-domain
 (6.231)

 . (6.232)

This needs to be solved. Previously, in eq. (3.164), we had already met the Bessel
differential equation:

 . (6.233)

Substituting 
 . (6.234)

in eq. (6.230) gives the new equation

 . (6.235)

1
x
-- 

x∂
∂ x 

x∂
∂ 1

x2
-----– 

  Bϕ x τ,( )
τ∂

∂ Bϕ x τ,( )=

1
x
-- 

x∂
∂ x 

x∂
∂

 
  Bz x τ,( )

τ∂
∂ Bz x τ,( )=

B x 0,( ) 0=

B 1 τ,( ) f τ( )=

B 0 τ,( ) finite=

Bz Bϕ

Bz τ( ) fz τ( )=

Bz x τ,( )
B̃z x p,( )

1
x
-- 

x∂
∂ x 

x∂
∂ p– 

  B̃z x p,( ) 0=

B̃z 1 p,( ) f̃z p( )=

B̃z 0 p,( ) finite=

1
ξ
--

ξ∂
∂ ξ

ξ∂
∂ 1 m2

ξ2
------– 

 + Zm ξ( ) 0=

ξ xi p=

1
ξ
--

ξ∂
∂ ξ

ξ∂
∂ 1+ B̃z ξ p,( ) 0=
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This is Bessel’s differential equation with index or order zero. Therefore
 , (6.236)

where A and B may depend on p but not on x. Because of the boundary conditions
(6.232) 

 , (6.237)

and because of the boundary condition (6.231), the other constant has to be

 . (6.238)

Therefore, the Laplace transformed field is

 . (6.239)

We can obtain the general solution for arbitrary boundary conditions in the time
domain from this formula, if we are able to find the inverse transform for

. This is possible by means of the residue theorem. Notice the
broad analogy to the problem of Sect. 6.6.3.

For the inverse transform, we need the residues of the function

 . (6.240)

This has an infinite number of poles of order 1. If we use the notation introduced in
Sect. 3.7.3.3, eq. (3.209) to address the zeros of  by , then it is for the poles

 (6.241)

or
 . (6.242)

The residues of the function in (6.240) are

 

Using the identity
 

gives

B̃z x p,( ) AJ0 xi p( ) BN0 xi p( )+=

B 0=

A
f̃z p( )

J0 i p( )
-------------------=

B̃z x p,( ) f̃z p( )
J0 xi p( )

J0 i p( )
----------------------=

J0 xi p( ) J0 i p( )⁄

J0 xi p( )

J0 i p( )
---------------------- pτ( )exp

J0 λ0n

i p λ0n=

p λ0n
2–=

Rn
J0 λ0nx( ) λ0n

2– τ( )exp

J0 i p( )
---------------------------------------------------

p λ0n
2–→

lim p λ0n
2+( )=

 
J0 λ0nx( ) λ0n

2– τ( )exp
i

2 p
---------- J '0 i p( )

---------------------------------------------------
p λ0n

2–→
lim     .=

J '0 J1–=
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 (6.243)

and therefore, we have the transform

 . (6.244)

Applying the convolution theorem to eq. (6.239) yields

 

or

 .

(6.245)

The result is in the form of a Fourier-Bessel series according to (3.213). Its
coefficients are time dependent functions:

 . (6.246)

The structure of eq. (6.245) is very similar to the corresponding structure of the
plane equation (6.195). 

The current in the cylinder is

 . (6.247)

It is remarkable that this is not a Fourier-Bessel series, but rather a so-called Dini
series, which we will not discuss further. Details for further study to the various
types of series involving Bessel functions, including Dini series, can be found in
[7].
As an example, let us consider the simple boundary condition

 (6.248)

or
 . (6.249)

Then one writes the field with (6.239)

Rn
2λ0nJ0 λ0nx( ) λ0n
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----------------------------------------------------------------=
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∞
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τ
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∫
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∞
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 . (6.250)

The inverse transform by means of the residue theorem occurs in similar manner as
before for the functions . Recognizing the additional pole at

 and the additional factor  in the denominator gives

 (6.251)

and

 (6.252)

Another avenue is to start with the general solution (6.245) to obtain

 

(6.253)

We have used the fact that 

 . (6.254)

This is the Fourier-Bessel series for the function 1 (the number one) in the range
. We shall prove this using the following Ansatz:

 .

We multiply it with  and integrate over x from 0 to 1:
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The last step is a result of the orthogonality relation (3.214). Furthermore, using
our little set of formulas from Sect. 3.7.2 page 170 we find

 .

The coefficients are therefore

 .

This proves our claim. The results of (6.251) and () agree. The expansion (6.254)
makes the result (6.251) understandable. According to (6.251) for  one has

 ,

just as the initial condition requires. 
The exponential terms may be neglected for very large times, which results in

 .

Of course, this is necessary. For very large times, the uniform magnetic field
occupies the entire space, including the inside of the cylinder. The currents which
initially shielded the inside of the cylinder from the magnetic field decay over time.
The time to decay is of the order of magnitude

 ,

 . (6.255)

Disregarding the factor  this agrees with our rough approximation (6.39).

6.7.3 The azimuthal Field Bϕ

We will now discus the azimuthal field in a similar manner as the longitudinal
field. Now, we create a magnetic field 

 . (6.256)

at the surface of a cylinder, while there is no initial field inside of the cylinder.
Then eq. (6.224) applies to . This results for  in
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 . (6.257)

The boundary conditions are 
 (6.258)

 . (6.259)

The only difference to the longitudinal case is that now,  replaces . The
solution is obtained in analogy to (6.239)

 . (6.260)

For the inverse transform, we need the residues of the function

 . (6.261)

Its poles are at 
 . (6.262)

or
 . (6.263)

The zero  of  is no pole but a removable singularity, since the
numerator vanishes there as well. The ratio  remains finite
(= x). The residues are then

 

Using the identity

 

and
 

gives

 , (6.264)

and similar to (6.244), the transformation is
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 . (6.265)

Applying the convolution theorem to eq. (6.260) yields

 .

(6.266)

As an example, let us consider a similar case as before, now with the
boundary condition

 (6.267)

or
 . (6.268)

Then we write the field with (6.260)

 . (6.269)

The function 

 .

has poles at  and also at . The residue there can be found most
conveniently by finding the initial term of the expansion of . According to
(3.174) for small magnitudes of the argument  it is approximately

 ,

and thus, for the residue there

 . (6.270)

The remaining residues are found similarly to (6.264), now with an additional
factor  in the denominator.

 . (6.271)

Thus
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 . (6.272)

The same result can be derived using the general solution (6.266)

 

 . (6.273)

The Fourier-Bessel series for x in the range  has to be used here:

 . (6.274)

The proof is achieved using the formulas from Sect. 3.7.3.3 and is left for the
reader as an exercise. Thus, both methods provide the same result. With (6.272)
and (6.274) follows for the time 

 ,

that is, the initial condition for a vanishing field inside the cylinder is satisfied,
indeed. For very large times the field becomes as required:

 . (6.275)

Prescribing  on the boundary of the cylinder means that the total current I inside
the cylinder is determined:

 . (6.276)

The current I remains constant during the entire diffusion process, merely the
current density  varies over time. Initially, the current flows entirely in the
cylinder surface, and finally, the current has a uniform density inside the entire
cylinder. 
The field that linearly increases with the radius (6.275) corresponds to this final
state. One can also derive the steady state directly from (6.217), from which
follows for the steady state that

 , (6.277)
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with the general solution

 . (6.278)

To avoid the divergence at  requires that 
 ,

and the boundary condition at  is satisfied if
 .

Therefore, , as claimed.

6.7.4 Skin Effect in a Cylindrical Wire

As another special case of diffusion, we discuss the skin effect of a cylindrical wire
in an azimuthal field . There shall be no initial field inside the wire. The
current

 (6.279)

shall start flowing through the wire at time . At the surface, this
creates the field

 (6.280)

 . (6.281)

Thus, the boundary conditions in the time and p-domain, respectively are
 (6.282)

 . (6.283)

With (6.260), we obtain

 . (6.284)

The function

(6.285)

has poles of order 1 at 
 (6.286)

 (6.287)
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and also at 
 . (6.288)

Its residues at the locations  are

 . (6.289)

This can be obtained from the residues (6.264) and the factor 

 .

The residues of the poles at  are

 

 . (6.290)

Therefore

. (6.291)

Again, the exponentially decaying terms are insignificant for large times. This
gives the “steady state” for which one obtains

 . (6.292)

Particularly for , in harmony with the boundary condition, the field
becomes

 .

The functions  are complex valued, however, one may split them into
their real and imaginary parts. These functions have such great importance that
new functions and names were introduced to address them, the Kelvin functions
with “ber” (Bessel real part) and “bei” (Bessel imaginary part)

 . (6.293)
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Kelvin functions allow one to write  as of (6.291) or (6.292) in a real
form. We will leave the details for the reader’s further study. Here, we will suffice
with a short discussion of two limits (very low and very high frequencies).

1) The limit of very low Frequencies ( )
If , then the magnitude of all arguments of the Bessel functions in (6.292) are
much smaller than 1 because x is in the interval . Consequently

 , (6.294)

and therefore

 . (6.295)

This should come as no surprise. The field is in phase everywhere because we
assumed that the frequency of the field is small and its corresponding period is
consequently large, that is, it is large against the time it takes to penetrate the
cylinder. From 

 (6.296)

follows that

 . (6.297)

Note eq. (6.137) with . The amplitude increases linearly with x (i.e., linear
with the radius). Therefore, the current density inside the cylinder is spatially
constant for all times. However, it oscillates over time with the period . In
principle, this is the behavior of a direct current, which changes only slowly
(slowly compared to the typical penetration depths, ).

2) The limit of very high frequencies ( )
A zero order approximation for very large arguments is this:

 (6.298)

 . (6.299)

Using this in (6.292) and (6.293) gives
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 . (6.300)

The reader is cautioned that this expression is valid only for  (that is, even
for large frequencies, its validity is restricted to x being not too small, i.e., not too
close to the axis). Take eq. (6.300), close to the surface where  or ,
there one observes that the field behaves just like the planar case. For this purpose,
compare the current result (6.300) with that of the half-space (6.139) and notice
that there, the distance ξ from the surface of the half space corresponds here to the
d i s t a n c e  f r o m  t h e  c y l i n d e r  su r f a c e  ,  o r  d i m en s i o n l e s s :

. From 
 (6.301)

follows that 

 , (6.302)

that is, the penetration depth is very small versus the cylinder radius. Also plausible
is, that under those circumstances the diffusion occurs as in the plane case. This is
true, not only for cylinders, but for all kinds of shapes, as long as the frequency is
large enough, or the interest is only in sufficiently thin penetration depths. From
this perspective, the result (6.139) is of rather general significance. 

Summarizing, we may conclude that the case of very low frequencies can be
reduced to the case of direct currents, while the case of high frequencies can be
reduced to a plane diffusion problem. For intermediate frequencies, there is no easy
approximation. However, the behavior is qualitatively (not quantitatively) similar
to the plane case that we have studied in Sect. 6.5.4: The wave is damped while
penetrating the medium and it exhibits a phase difference.

6.8 Limits of the Quasi Stationary Theory

The quasi stationary theory is an approximation which is based on neglecting the
displacement current in Maxwell’s equations. We have mentioned already that all
phenomena related to electromagnetic waves are neglected. It may sound paradox
that we have encountered wave behavior in processes like the skin effect. Notice
however, that these processes are enforced by the boundary conditions and are
unrelated to electromagnetic waves which we will discuss later.

A typical behavior of propagation of waves is that this occurs with a certain
finite velocity. We will discuss this in detail in the next chapter. Furthermore, the
fundamental postulate of relativity, and thereby for the entire natural science
altogether, is that there is no signal velocity higher than the speed of light in
vacuum, . Consider for example, a field of the kind as discussed in
Sect. 6.4, initially shaped like a δ-function, propagating in the infinite space.
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Eq. (6.69) describes such a field. This equation indicates something very peculiar.
At the time , the field exists only at one particular place, however, it is there
infinitely large. Then the field already penetrates the entire space after an
arbitrarily small period of time , even though it is very small at large distances.
This seems to suggest that the signal velocity is infinitely large. Indeed, given
sufficiently sensitive instruments, it should be possible to detect a field at very
large distances after an extremely short time period, and use this to transmit
signals, at least in principle, if these fields actually existed. Nonetheless, such is not
the case. The infinite signal speed is typical for “diffusion processes”, i.e., for those
processes described by the diffusion equation. However, physically they are not
real. Formally – as we find – this results from neglecting the displacement current,
which is equivalent to the assumption of infinite signal propagation velocity.

Another example we have dealt with shall be mentioned: The conductive
half-space with no initial field. When a constant field  is suddenly applied to the
surface at the time , then according to eq.  (6.117) or Fig. 6.20, this field
penetrates the entire half-space after an arbitrarily short time period.

All this should not be interpreted in a manner, rendering all these fields as
useless or totally wrong. Under appropriate preconditions, the quasi stationary
theory provides an excellent approximation of the actual field behavior. The
enormous velocity of the speed of light is thereby fundamental. The fields
propagate with this speed, and the far away areas which have not been reached by
the field are for many problems immaterial. Besides, even though these faraway
fields described by the quasi stationary theory do not vanish, nevertheless, they are
oftentimes so small that they are deemed to be insignificant. The qualitative
conclusion of these remarks is that the quasi stationary theory is a useful
approximation only for sufficiently large times or sufficiently slow or low
frequency processes. To arrive at a quantitative statement, we return to the example
of the field diffusion in the infinite space. In contrast to eq. (6.69), the field has to
vanish if

 .

In practice, this is insignificant if

that is, if

 .

Therefore, it must be:
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 .

The time  is the relaxation time, discussed in Sect. 4.2. For the case of the skin
effect, a necessary requirement is that the frequency is

 .

These prerequisites and the related approximations can be dropped when
considering the displacement current, as we will do in Chapter 7. Specifically in
Sect. 7.12, we will return to the currently discussed problems and solve some of
which exactly, from the perspective of the wave theory. The limits of the quasi
stationary theory will become more apparent in this context. Then, we will also see,
how the solutions of the quasi stationary approximation transform into the wave
theory and vice versa. 
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7 Time Dependent Problems II (Electromagnetic 
Waves)

7.1 Wave Equations and their simplest Solutions

7.1.1 The Wave Equations

Now we consider Maxwell’s equations in their complete form. Assume that the
medium in which we will solve them is uniform, i.e.,  are constant over all
space. 

 (7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

Taking the curl of (7.2) and substitute by use of (7.7), (7.1), (7.6), and (7.5) yields

Making use of the vector identity

gives

 . (7.8)

On the other hand, taking the curl of (7.1) and substitute by use of (7.6), (7.5),
(7.2), and (7.7) yields
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and with (7.3) obtain

 . (7.9)

The two equations (7.8) and (7.9) represent the so-called wave equations for E and
B in their most general form for uniform media.

Inside a charge-free and non-conducting dielectric, vacuum (or free space) in
particular, we have

 ,

 ,

 ,
giving rise to the more specific wave equations

 (7.10)

 . (7.11)

7.1.2 The simplest Case: Plane Wave in an Insulator

Initially, only the simplest solutions of the wave equations (7.10) and (7.11) shall
be examined. It shall be assumed that E and B depend on only one of the three
Cartesian coordinates for example, z, but are time dependent. 
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Both fields have to be source free since , i.e., 
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It follows that
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 . (7.17)

Later, we will find that neither  nor  may depend on t. It is possible that the
space contains a field  or , neither of which depend on time or space, and
thus, do not interest us. We might as well assume that 

, (7.18)

 . (7.19)

Fields which, when a coordinate system is chosen properly, depend only on one
Cartesian coordinate and time are called plane waves. Therefore, we note that
plane waves have no field components in propagation direction (here the z-
direction), that is, they are inevitably transverse waves. This results from above
assumption, namely the absence of any volume charges. In the presence of volume
charges, it is entirely possible to have plane waves with field components in
propagation direction, the so-called longitudinal waves. The so-called “plasma
waves”, which are important in plasmas and solid state physics, are of this kind.
We will limit our discussion to transverse waves. In this case, one only needs to
consider the transverse field components , and :

 (7.20)

 . (7.21)

Almost obvious is that arbitrary functions  and  satisfy the associated wave
equation

 . (7.22)

This is d’Alembert’s solution to the wave equation, where

 (7.23)

is the speed of light in the observed medium.
The proof is simple. Starting with the derivative
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 ,

from which is obvious that this satisfies (7.20). This applies similarly to  and the
components of B (  and ). On the other hand, the components of B and E are
not independent of each other. From (7.2) follows that 

 .

A consequence thereof is that  has to be constant in time. Anticipating this, we
have used this fact already above. Furthermore

 

 

or when integrating over the time

 (7.24)

 . (7.25)

On the other hand, using (7.1) for an insulator with , we get

 .

This means, as claimed before, that  and thus  are also independent of t.
Moreover
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Integrating for z gives

(7.26)

 . (7.27)

Comparing eqs. (7.24) through (7.27) with each other provides a condition for the
integration constants, which is

 . (7.28)

Consequently, these may not depend on either z or t, i.e., they have to be constant in
space and time. Disregarding such constant fields, the field of a plane wave has to
be:

 . (7.29)

This plane wave has two parts, one which moves in positive z-direction without
changing its shape:

 . (7.30)

Its propagation direction is
 

Expressed in a different form, one writes
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or

 , (7.32)

where

 (7.33)

is the so-called characteristic impedance of the medium. The other part propagates
also without changing its shape, but in the other direction, that of the negative z-
axis:

 .

Writing
 

allows to write this in the form of eqs. (7.31) through (7.33). These equations are
generally applicable for any plane wave. Since they are in vector form, they are
independent of a coordinate system. In a rotated coordinate system, the
propagation direction would not be along the z-axis anymore, but eqs. (7.31)
through (7.33) would still apply. Conversely, it is also true that

(7.34)

i.e., the three vectors E, B (or H), and  (in this order) form a right handed
system. To show this, one multiplies (7.31) in a vector product with  to obtain

 .

Applying
 

and
 ,

completes the proof.
The characteristic impedance for vacuum is
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 . (7.35)

If  in eq. (7.29) (and therefore also ) or if   (and therefore
also ), then the electromagnetic field oscillates only in a plane. These
waves are called linearly polarized. A general plane wave can be constructed from
two waves which are polarized perpendicular to each other. The result is then just
the wave described in (7.29). Fig. 7.1 and Fig. 7.2 illustrate examples of both types
of linearly polarized waves.

7.1.3 Harmonic Plane Waves

The waves of the kind depicted in Fig. 7.1 and Fig. 7.2 are also referred to as
“wave trains” or “wave packets”. They can be formed by superposition of
appropriate sets of harmonic waves with specific wave lengths. The underlying
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formal concept is the possibility to represent any function as a Fourier integral, i.e.,
by superposition of so-called harmonic waves. For instance

 . (7.36)

This wave is sketched in Fig. 7.3.
Here,  and  are the amplitudes of the fields;  is a phase angle which

depends on where the origin of the chosen coordinate system is, and the choice of
when the time is zero.  is the angular frequency of the wave and  is the wave
number. If  is its frequency,  its period, and  its wave length, then we may
write

 (7.37)

 . (7.38)

The “phase velocity” of the wave is

 (7.39)

This is a result of the wave equation (7.10) when using it in (7.36). We obtain

 ,

which, again, gives (7.39). Moreover, the wave expressed in (7.36) can be regarded
as a special case of (7.22). The reason is that
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 ,

i.e., a function of . 
From (7.39) one obtains

 . (7.40)

The relation between  and  is called the dispersion relation, here for the case of
a plane electromagnetic wave in an ideal insulator. In other circumstances the
relation between  and  could be different, i.e., the dispersion relation could be
of the form:

 . (7.41)

In this general case, we have to associate different velocities with the wave. The
velocity with which the phase propagates is still the phase velocity. The phase

 
remains constant for

 .

The constant phase is then
 .

Therefore, the phase velocity in general is

 . (7.42)

Dispersion accounts for the fact that the phase velocity according to (7.42) may be
a function of the frequency (wave length). In the special case when the dispersion
relation is of the form given in (7.40), then the phase velocity is the same for all
frequencies (wave lengths), i.e., this is the dispersion free case.

In addition, the so-called group velocity  is also of great importance. It is
defined by

 . (7.43)

For the specific case of the dispersion relation as of (7.40), both velocities coincide,
both are equal to c:

 . (7.44)

In later sections, we will find dispersion relations for which this is not true. The
significant quantity in these cases is not the phase velocity, but the group velocity,
which describes the transmission of signals or the energy transfer. It relates to a
group of waves (a wave packet), which is composed of individual waves having
different wave lengths. In the case of (7.40), all individual waves travel with the
same phase velocity . Under these circumstances, the wave packet
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maintains its shape despite of its propagation, which is also an immediate result of
the wave equation, and which manifests itself in D’Alembert’s solution. The
subject becomes much more complicated when different parts of the wave
propagate with different phase velocities. Then, general statements about the
behavior of a wave packet are no longer possible. What is probable in this case is
that its shape changes significantly over time. As a consequence, it may not even
be possible to describe its motion with a single velocity. However, certain
statements for wave packets of a narrow frequency band are possible. Narrow
frequency band shall mean that the frequencies within the wave packet fall into a
small frequency interval ( ) where . Then, the maximum of the
wave packet travels with the velocity  (Fig. 7.4). The shape of the packet
changes as it moves. To transmit a signal by means of waves requires a wave
packet, and their signal velocity is, as already mentioned, the group velocity. A
word of caution is here appropriate.  may not always be interpreted as the
signal velocity. 

The harmonic plane waves are of fundamental theoretical importance because
every possible wave can be composed of them by superposition. We will discuss a
few examples below.

A plane harmonic wave may propagate in an arbitrary direction of the space.
The propagation direction is typically described by the wave vector (propagation
vector, wave number vector) k. Its direction is the propagating direction and its
magnitude is like before

 . (7.45)

This defines a plane wave in the following way:
 . (7.46)

The phase is thereby constant, if for a fixed point in time 
 . (7.47)
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These are the equations of planes to which k is perpendicular (Fig. 7.5). These
waves are, indeed, plane waves which propagate in the direction defined by k.

7.1.4 Elliptic Polarization

Consider superimposing two linearly polarized waves of the same frequency,
propagating in z-direction, but with different amplitude and a phase difference of

.
 (7.48)

 . (7.49)

After eliminating  and  by means of these relations:

 and  ,

we obtain

 . (7.50)

This is the equation for an ellipse, when regarding it as an equation for .
This means that in the planes , the tips of the E vector describe an
elliptic path. These waves are therefore appropriately called elliptically polarized
(or simply elliptic waves). Particularly for 

 , (7.51)

or even more general, for 

 , (7.52)
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we obtain

 . (7.53)

This is the equation of an ellipse with its principal axis parallel the x- and y-axis.
Further specializing, so that

 (7.54)

yields
 . (7.55)

that is the equation of a circle. This represents a circularly polarized wave. For
 one obtains a linearly polarized wave.

7.1.5 Standing Waves

Two waves with the same amplitude, wave length, and polarization travelling in
opposite directions give

 . (7.56)

Because of the trigonometric identities

 , (7.57)

it follows that

 . (7.58)

This represents a standing wave, which, so to speak, oscillates in place (Fig. 7.6).
With the appropriate choice of z and t, it is possible to let . Then

 . (7.59)

 Ex
2

Ex0
2

--------
 Ey

2

Ey0
2

--------+ 1=

Ex0 Ey0 E0= =

 Ex
2  Ey

2+ E0
2=

ϕ nπ=

Ex z t,( ) Ex0 ωt kz– ϕ1+( )cos Ex0 ωt kz ϕ2+ +( )cos+=

Hy z t,( )
Ex0
Z

-------- ωt kz– ϕ1+( )cos
Ex0
Z

-------- ωt kz ϕ2+ +( )cos–=






αcos βcos+   2 α β+
2

------------- 
 cos α β–

2
------------ 

 cos=

αcos βcos– 2 α β+
2

------------- 
 sin α β–

2
------------ 

 sin–=








Ex z t,( ) 2Ex0 ωt
ϕ1 ϕ2+

2
------------------+ 

  kz–
ϕ1 ϕ2–

2
------------------+ 

 coscos=

Hy z t,( )
2Ex0

Z
-----------– ωt

ϕ1 ϕ2+
2

------------------+ 
 sin kz–

ϕ1 ϕ2–
2

-----------------+ 
 sin=









ϕ1 ϕ2 0= =

Ex z t,( ) 2Ex0 kzcos ωtcos=

Hy z t,( )
2Ex0

Z
------------ ksin z ωsin t=









7.1   Wave Equations and their simplest Solutions 417

Fig. 7.6 illustrates how the amplitudes of the oscillating field vary.
The zeros of the electric field  (which are called its nodes or nodal points) are
located at

 

 

and thus

 

The nodes of the magnetic field are at 
 

 

and thus

 .

At the time , for instance, , while  assumes its maximum value.
Conversely for , it is , while  assumes its maximum value, etc. 
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7.1.6 TE- and TM Wave

As illustrated in Fig. 7.7, we now superimpose two plane waves with the same
frequency, amplitude, and polarization, but with different propagation direction. It
shall be for the first wave:

1)  

where

 

and for the second wave

2)  

where

 

When superposing these and using (7.57), we find
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and
 

or

 (7.60)

and

 . (7.61)

The wave described by (7.60) and (7.61) is not a plane wave. It travels in z-
direction. Its phase velocity is

 . (7.62)

Besides the transverse field components  and , the magnetic field has also a
longitudinal component . Thus the field is transverse with respect to the electric
field, but not with respect to the magnetic field. Such a wave is called transverse
electric wave or abbreviated TE wave (also H wave). Its amplitudes are y-
dependent.

One can treat the case illustrated in Fig. 7.8 in a similar manner. Now one
superimposes the following two waves. First:
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1)  

where

 

and for the second wave

2)  

where

 

The superposition yields 

 (7.63)

and

 . (7.64)

Where it was used that 

 .

The wave described by (7.63) and (7.64) is, again, not a plane wave. It travels in
the z-direction. It is transverse with respect to B but not with respect to E. Such a
wave is called a transverse magnetic wave or abbreviated TM wave (also E wave).

These waves are important in connection with wave guides to which we will
return later. True for both kinds of waves (TE and TM) is that
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and

 .

Therefore, 

 (7.65)

and

 . (7.66)

These waves are not dispersion free. Their phase velocity is higher than the speed
of light for the respective medium, thus its phase velocity for vacuum is higher than
the speed of light in vacuum. This is entirely possible and does not entail any
contradiction to the theory of special relativity, according to which no signal
velocity may exceed the speed of light in vacuum. The group velocity is what
qualifies for the signal velocity, which is

 . (7.67)

Consequently
 (7.68)

and 
 , (7.69)

as it must be. To obtain (7.68) directly from the dispersion relation by
differentiating for is also possible:
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In the limit , the waves (7.60), (7.61) as well as (7.63), (7.64) become
plane waves. The longitudinal components of  and  vanish in the process.

The other limit,  results in standing waves of the kind discussed in
Sect. 7.1.5. 

7.1.7 Energy Density in and Energy Transfer by Waves

First, consider the plane wave
 . (7.70)

 . (7.71)

Then, the pointing vector discussed in Sect. 2.14 is according to (2.153)

 . (7.72)

 is the energy flux density, i.e., the electromagnetic energy transferred across an
area per unit time and unit area. On the other hand, the energy density stored in the
field of the wave is

 . (7.73)

Multiplying this with c, just yields :

 . (7.74)

We conclude that the energy stored in the field is transferred in z-direction with the
speed of light.

The just discussed TE and TM waves are interesting examples. We limit our
discussion to the TE wave described by the two equations (7.60) and (7.61). in this
case we have

 . (7.75)

Observe that on average over time, there is no energy transfer in y-direction.
However, there is an energy transfer in z-direction, as the time average of 
does not vanish. The effective, time averaged energy transfer is 

 . (7.76)

Further averaging, now over the location dependency, we obtain

 . (7.77)

Furthermore, the spatial and temporal average of the energy density is
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 . (7.78)

Comparing the last two equations reveals that the available energy, averaged over
time and over space, is transferred in the z-direction with the group velocity 
(and not by the phase velocity  which is in this case higher than the speed of
light c).

Note: In case the fields are written in complex notation, then it is advisable to
return to the real fields before calculating energy densities or the Poynting vector.

7.2 Plane Waves in a Conductive Medium

7.2.1 Wave Equations and Dispersion Relation

Now, we study a plane wave in a conductive medium which does not have any
volume charges. Then with (7.8) and (7.9), we obtain

(7.79)

 . (7.80)

For variation and to simplify, we take advantage of the complex notation which
allows to describe the wave in the following form:

 (7.81)

 . (7.82)

The physically relevant fields are represented individually by either the real part or
by the imaginary part thereof. Using this approach in either of the two eqs. (7.79)
or (7.80) yields the same dispersion relation:

or
 . (7.83)

The operators of vector analysis can be expressed via multiplications when
applying them to statements of the kind as expressed by (7.81) and (7.82). For
instance, the divergence is
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 . (7.85)

Both statements may be formally expressed by 
 . (7.86)

From it follows immediately

and
 .

Furthermore
 . (7.87)

With this, the two statements (7.81) and (7.82), together with the wave equations
(7.79) and (7.80), again yield the dispersion relation (7.83). Next we will apply
Maxwell’s equations to the statements (7.81) and (7.82). Starting with (7.4), letting

 gives
 . (7.88)

Consequently,  and  have to be perpendicular to each other, i.e., the wave has
to be transverse relative to . It also has to be transverse relative to , since it
follows from (7.3) that 

 . (7.89)

Furthermore, from (7.2) it follows that

 ,

and thus

 . (7.90)

As a special case, this formula contains relation (7.31), which was previously
derived in a much more tedious manner. The generalization is grounded in the fact
that according to (7.83), k is generally not a real valued vector. Finally, one needs
to consider (7.1), which, when used in conjunction with (7.6) yields

 . (7.91)

Eq. (7.90) allows to eliminate B and obtain

 

Finally, with (7.88) one finds
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 , (7.92)

i.e., again the dispersion relation (7.83).
With this, we have now again derived the properties for the special case of a

plane wave in an insulator ( ), however, this time in a formally much shorter
and more elegant way than above. The current approach for the derivation
highlights specifically the transverse nature of the wave with respect to E and is a
consequence of E being source free. Remember that we had assumed that .
The fact that E and B are perpendicular to each other as expressed in (7.90), is an
immediate consequence of the law of induction. 

For the case , the dispersion relation (7.83) reduces to a result we
already know:

 

or 
 .

The relation is more complicated for a conductor. There are a number of different
cases, of which we shall restrict our discussion to only two limiting cases. 

7.2.2 The Process is Harmonic in Space

If a process is harmonic in space, then k is real valued and as a consequence,  is
complex valued. If we identify the real part of  with  and its imaginary part
with , then 

 . (7.93)

Rewriting eq. (7.83) using this new assignment gives
 .

For this to be true, both, the real and the imaginary part have to vanish
independently

 (7.94)

(7.95)

Solving (7.95) for  gives

 . (7.96)

Inserting this in (7.94) and solving for  gives

 . (7.97)

Definition (7.93) requires that  is real. This is only true if
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 . (7.98)

Then, the wave becomes
 

 . (7.99)

This means that for the wave,  plays the role of the real valued angular frequency
while  introduces exponential decay over time (damping).

Conversely, if 

 , (7.100)

then,  becomes purely imaginary and we may write
 . (7.101)

Substituting this into (7.83) gives
 . (7.102)

The two solutions when solving the quadratic equation (7.102) for  are

 . (7.103)

Finally, the wave becomes
 . (7.104)

To compare the two waves of (7.99) and (7.104) with each other is revealing.
While the wave propagates for sufficiently large wave numbers (condition (7.98)),
this is not the case for small wave numbers (condition (7.100)). The root cause for
this peculiar behavior is that the diffusion process and the wave propagation
process compete with each other. Take the wave equation in its form (7.79) or
(7.80), then we find that in the statement of the form (7.81) and (7.82), the
diffusion term basically behaves like

 ,
while the wave propagation term behaves like

 .
If, for example, κ is very small, ε very large, then the diffusion term can be
neglected. Then, according to (7.98), the wave propagates with the phase velocity

 for almost all wave numbers k (except for extremely small ones). Conversely,
if κ is very large and ε very small, then the diffusion term dominates. Now, for
almost all wave numbers k (except for extremely large ones), the resulting
expression has now the form of (7.104), which describes an exponentially decaying
field and not a propagating wave.
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7.2.3 The Process is Harmonic in Time

For a harmonic process, which in practise is the more important case, ω  is real,
while k is complex. One may write

, (7.105)

and with eq. (7.83) obtains
 .

Separating the real and imaginary part gives
 (7.106)

 . (7.107)

Solving for α gives

 ,

and the quadratic equation in  is

 . (7.108)

Solving for β yields four solutions:

 .

In the definition, we have required that β is real. Consequently for the term under
the radical, only the positive sign can be considered. Therefore

 . (7.109)

With this and eqs. (7.106), (7.107) one obtains for α:

 . (7.110)

It shall be noted, that one could allow for imaginary values for β. However, this
makes α imaginary as well and comparison of the results reveals that this does not
provide anything new. Merely, α and β exchange their roles. 

Using eqs. (7.105), (7.109), (7.110) in (7.81) gives
 , (7.111)

having assumed that k is a vector in z-direction. This makes the real part of k,
namely β, responsible for propagation of the wave, while its imaginary part α,
controls the damping. Therefore α is called damping constant, and β the phase
constant. Eq. (7.111) describes a damped plane wave. The plane 
represents both: planes of constant phase, as well as planes of constant amplitude.
A wave with these properties is also called a homogeneous wave.
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This is by no means the most general case. This is obtained if
 , (7.112)

where  and  are vectors for which the dispersion relation has to hold, i.e., 
 . (7.113)

If the two vectors  and  are parallel, then the appropriate choice of coordinate
system allows to arrive at the same expression as stated in (7.111), and thus one
obtains a homogeneous wave in the just defined sense. The planes of constant
phase are perpendicular to . The planes of constant amplitude are perpendicular
to . If the two vectors point in different directions, then the result is an
inhomogeneous wave. In order to be able to provide a simple example, let 
in (7.113). This forces  and  to be perpendicular. One may assume, for
example, that

 , (7.114)

which results in the wave
 . (7.115)

For the relation between b and a we have
 . (7.116)

Inhomogeneous waves are not transverse, as (7.90) clearly shows. Moreover, they
are not plane waves in the sense of our definition because the amplitude is not
constant in the planes where the phase is constant. Nevertheless, inhomogeneous
waves are important. Oftentimes, they are necessary to satisfy boundary
conditions, e.g., for reflection problems. We will come back to such cases.

The magnetic field that belongs to the wave described by (7.111) results from
(7.90). B is perpendicular to E. However, there is a phase difference between B and
E because k is a complex vector. There was no phase difference in the ideal
insulator ( ). If the electric field is

 ,

then the magnetic field becomes

Notice that B has only a y-component

 .

If  is real valued, then the electric field expressed in real value notation is 
 (7.117)

and the magnetic field is
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 ,

i.e., 

 

Let

 ,

 ,

and thus

 , (7.118)

which yields
 , (7.119)

where

(7.120)

and

 . (7.121)

Letting  results in the previously discussed case of the ideal insulator.
We will discuss two limits: If 

or expressed differently by using the relaxation time  from Sect. 4.2, eq. (4.23)

then the dominant term in the wave equation is 

 ,

the diffusion term. the wave propagation term.
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Using (7.109) and (7.110) yields

and for the phase velocity

The dominating property in this case is

The material is therefore called a 

Whether a particular material should be considered more in terms of a conductor or
an insulator with respect to a particular wave, does not only depend on the material
constants  and , but also on the frequency of the wave under consideration. The

become apparent for frequencies sufficiently 

Apprehensibly, the reason lies in volume charge carrier mobility. When the
frequency of the oscillating electric field is 

the motion of the charges is 

to be able to cancel the field created by the displaced volume charges.
It is impossible for an electrostatic field to exist in a conductor (Sect. 2.6),

while slowly oscillating fields can penetrate the conductor only a very small
distance. Even within the distance of one wave length, they are damped by a factor
of , which is the result of (7.111) for . Otherwise, the
results we obtain here for the limit of small frequencies are identical to those
obtained in Sect. 6.5.4. Take note of eq. (6.145). 

The energy lost by damping is transformed into heat. The proof can be
performed using the energy principle, which we will forgo here.
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7.3 Reflection and Refraction

7.3.1 Reflection and Refraction for Insulators

Let a plane wave be incident on a plane boundary between two insulators (“media
boundary”), then the various boundary conditions for E, D, H, B have to be
satisfied. Fig. 7.9 illustrates this. The boundary conditions can be satisfied, if one
assumes that besides the incident wave ( ), there is also a wave reflected back
into medium 1 ( ), and a transmitted wave ( ) into medium 2. Disregarding the
case of total internal reflection, which we will discuss later, one has a wave of the
form:

 (7.122)

 (7.123)

. (7.124)

Certain field components have to be continuous at the media boundary. This results
in certain relations between , and . Because the boundary conditions
have to be satisfied at all times and for every point  on the boundary, all the
phases of the exponential functions in (7.122) through (7.124) have be equal. In
particular, it must be

. (7.125)

Consequently, there is only one frequency in both media. Without limiting the
generality, it may be assumed that the origin of the coordinate system lies in the
boundary between the media. Then the vectors  for all points on the boundary
lay entirely on the boundary itself. Therefore, it has to be

 . (7.126)

Fig. 7.9
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From this we first obtain 
 . (7.127)

Consequently, the vector  is perpendicular to the boundary and we may
write

 , (7.128)

where A is a constant. Therefore, the three vectors  lie in a plane, the so-
called plane of incidence, they are coplanar. Also, the two vectors  and  have
the same magnitude, i.e., they share the same frequency  and the
same medium (medium 1). The components of  and  which are parallel to the
boundary are obviously the same. Therefore, both angles are the same

 . (7.129)

This is the well-known law of refraction. Furthermore
 . (7.130)

Therefore, besides the three vectors  , also  lays in the plane of
incidence. However,  and  have a different magnitude. From the dispersion
relation (7.39) one finds that

 (7.131)

 . (7.132)

It follows from (7.130) that the tangential components of  and  must be equal,
i.e.,

and applying (7.131) and (7.132) gives

 .

Renaming 
 (7.133)

and

 (7.134)

yields Snell’s law:

 . (7.135)
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7.3.2 Fresnel’s Equations for Insulators 

Now we need to derive the relations between the amplitudes of the waves (7.122)
through (7.124) from the boundary conditions for the fields. To do so, we need to
distinguish two cases, whether the vector of the incident electric field lies in the
plane of incidence, i.e., is parallel to it, or whether it is perpendicular to the plane of
incidence. Every wave can be decomposed into these two components. We call one
case parallel polarization and the other perpendicular polarization. The discussion
shall start with perpendicular polarization (Fig. 7.10). The components of E and H
parallel to the boundary have to be continuous at the boundary. It must be

 (7.136)

 . (7.137)

With (7.32), (7.33) we get
 , (7.138)

and using this with (7.137) gives

 . (7.139)

With (7.136) and (7.139), we have two equations for two unknowns  and 
(  is considered as given). Solving for these yields

(7.140)
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[ . (7.141)

These are Fresnel’s equations for the case of perpendicular polarization. They were
derived only from the boundary conditions of the parallel components of E and H.
The perpendicular components of D vanish, which makes them automatically
continuous. The perpendicular components of B are continuous if

 (7.142)

or

 .

Using (7.136) gives

 

or
 ,

that is, continuity of the perpendicular components of B is ensured by Snell’s law
and by the continuity of the parallel components of E.

Multiplying (7.136) by (7.139) yields

 . (7.143)

In conjunction with (7.72), this gives
 . (7.144)

This equation expresses the conservation of energy principle. The incident field
energy is passed in parts to the reflected wave and the remainder to the transmitted
wave.

Now we approach the case of parallel polarization (Fig. 7.11). Here one has
 (7.145)

or
 (7.146)

This ensures continuity of the parallel components of H. Those of E have to be
continuous as well

 . (7.147)

The result are Fresnel’s equations for the case of parallel polarization. 
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 , (7.148)

 . (7.149)

The perpendicular components of B vanish and, thus, are continuous. Continuity of
the perpendicular components of D is ensured by Snell’s law and by the continuity
of the parallel components of H:

 . (7.150)

Using (7.146) gives

or 
 ,

in agreement with Snell’s law.
Multiplying (7.146) by (7.147) and in conjunction with (7.143) and (7.144) yields
the conservation of energy, as before.
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7.3.3 Nonmagnetic Media

For the special case
 ,

Fresnel’s equations (7.140), (7.141), (7.148), and (7.149) simplify. Using

 (7.151)

now yields

 , (7.152)

 , (7.153)

and

 , (7.154)

 .

(7.155)

If , which means that there is no media boundary and nothing noteworthy
happens, i.e., the incident wave continues and there is no reflection. There is no
reflection because of 

 ,

 .

Less self-evident is that in the case of parallel polarization, there is no reflected
wave when

 . (7.156)

That this is true can be derived from (7.154):
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 . (7.157)

Snell’s law states that

 .

The thereby defined angle 

 , (7.158)

is the so-called Brewster angle, also called the polarization angle. It is a
remarkable angle because, if we shine unpolarized light or any unpolarized
electromagnetic radiation, under this angle onto a boundary, then the polarization
of the reflected radiation is completely perpendicularly polarized because the
parallel polarized radiation passes through the boundary in its entirety without
reflection. Modification of eq. (7.158) are necessary if . Furthermore, in
such case there would also be a polarization angle for the perpendicularly polarized
wave. We will discuss neither case any further. 

Let us divide (7.143) by : This gives

 . (7.159)

 is the fraction of incident energy which is reflected. Conversely,
 is the fraction of incident energy which passes

through. Therefore, one defines the two quantities 

 (7.160)

and

 . (7.161)

R is called reflectance and T is called transmittance. Their sum is of course
 . (7.162)

Take as an example the perpendicular incidence on a non magnetic material, i.e.,
 . 

(7.163)

Then we use (7.140) and (7.148) together with (7.151) to obtain
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(7.164)

and using (7.141) and (7.149) together with (7.151) to obtain

 . (7.165)

Consequently for the reflectance we get

 (7.166)

and for the transmittance 

 . (7.167)

Of course, in case of  it must be  and . The graph of R and T
is illustrated in Fig. 7.12 for perpendicular incidence.
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7.3.4 Total Reflection

Snell’s law states

 . (7.168)

The medium with the relatively lower speed of light is a higher-index medium, the
one with the greater speed of light is a lower-index medium. 
The lower-index medium belongs to the larger angle, while the higher-index
medium corresponds to the smaller angle. When light travels into a higher-index
medium, refraction is towards the normal direction, while when travelling into a
lower-index medium, refraction is away from the normal (Fig. 7.13).For the
refraction away from the normal we have

 . (7.169)

Now, there are certain angles  which require . This is not possible for
real angles. The result is, that in this case the entire incident energy is reflected.
There is no refracted plane wave. The limit between ordinary reflection and this so-
called total reflection, i.e., the maximum possible angle  for which regular
reflection and refraction is possible is given by

 

i.e., 

 . (7.170)

This angle  is called critical angle of total reflection.
It must be emphasized that this does not at all mean that there are no waves in

medium 2. However this wave in medium two is not a plane (homogeneous) wave,
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but an inhomogeneous wave. This wave is necessary to satisfy the boundary
conditions. It travels parallel to the boundary surface and decreases exponentially
in the direction perpendicular to the boundary. The wave is of the kind discussed in
Sect. 7.2.3, eq. (7.115). One can calculate amplitude, phase constant, and damping
constant for the wave in medium 2, when starting from appropriate statements,
including the boundary conditions. This is not difficult but tedious and therefore,
will not be presented here. A formal solution would start from Snell’s law. The
angle  becomes imaginary when  and the refracted wave becomes
inhomogeneous. 

Of fundamental interest is a slightly modified case. This is illustrated in
Fig. 7.14, which shows a wave in medium 1, incident on a thin layer (medium 2).
Because of ( ), this should be a case of total reflection. However, a certain
fraction of energy is still passing through. What is happening here is that the
incident wave causes in the medium 2, a wave which decreases exponentially in the
direction perpendicular to the boundary. When the decaying wave has reached the
other end of the thin layer, it has not decayed enough to be actually zero. Under
certain conditions, this remainder of the wave can be the source of another
propagating wave into medium 3. Depending on the thickness of the layer, the
amplitude of this wave may be very small, however. This wave is necessary to
satisfy the boundary conditions on the boundary between medium 2 and 3.
Formally, this is analogous to Quantum Mechanics famous tunnel effect, which is
highly important also for electrical engineering because of its significance for the
properties of semiconductors. Fig. 7.14 sketches the behavior of the refracted wave
for 

 ,
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that is,  is greater than the critical angle for medium 2, but is smaller than the
critical angle for medium 3. Then, Snell’s law applies for media 1 and 3, just as if
there were no intermediate layer

 .

7.3.5 Reflection at a Conducting Medium

The case of another inhomogeneous wave, will not be calculated, but only touched
upon briefly. Consider a wave emerging from an insulator that is incident on a
conductor. Here too, besides the reflected wave back into the insulator, we also
need an inhomogeneous wave in the conductor to satisfy the boundary conditions
between an insulator and the conductor. Fig. 7.15 illustrates this. The
inhomogeneous wave is such that the propagation direction is given by Snell’s law,
but at the same time decays exponentially in the direction perpendicular to the
media boundary. The locus of constant phase is perpendicular to the propagation
direction. 

With a coordinate system as defined by Fig. 7.15, the following Ansatz may
serve to solve this problem:

 (7.171)

 (7.172)

 . (7.173)

Besides the material constants  and , the quantities  and 
have to be considered as given. The task is to find the appropriate , which
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is possible by means of the dispersion relation of the wave in eq. (7.173) and by
means of the following phase relation which was obtained from the phases above

 . (7.174)

This represents Snell’s law in the here applicable from. Calculating the amplitudes
 and  requires one to invoke the boundary conditions, applicable for the

various field components, whereby the proceedings are analogous to Sect. 7.3.2.
We shall pass on the tedious details of this calculation.

7.4 Potentials and their Wave Equations

7.4.1 The Inhomogeneous Wave Equation for A and ϕ 

Starting point are again Maxwell’s equations

(7.175)

 (7.176)

(7.177)

 . (7.178)

Because of (7.177), one may define as 
 , (7.179)

where  is a vector depending on space and time
 , (7.180)

But A is not unique. For instance, another vector potential  may provide the
same B-field. 

 ,

therefore
 .

Consequently, by means of an arbitrary scalar function  we may write
 . (7.181)

Inserting (7.179) in (7.175) gives

or

 . (7.182)
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Consequently, one may calculate B and E from A and ϕ, and considering (7.179)
and (7.182) write:

(7.183)

 . (7.184)

ϕ is not unique either. Instead of calculating B and E from A and ϕ, we might as
well choose  and  as starting point,

inasmuch as 

 . (7.185)

Therefore, the relation between A, ϕ and ,  is given by (7.181) and (7.185).
 is a function that may be chosen arbitrarily. Thus, there is substantial freedom

when choosing the potentials A and ϕ. We use this freedom to require that the
following condition be met:

 . (7.186)

This condition is called the Lorentz gauge. For time independent problems, this
reverts into the previously introduced Coulomb gauge (5.9). Should the potentials
in a given problem not correspond to the Lorentz gauge, then by means of an
appropriate function , it is always possible to find potentials that do so. 

The fields given by (7.183), (7.184) automatically satisfy two of Maxwell’s
equations, namely (7.175) and (7.177). To satisfy the other two requires some
work. We start with (7.176):

 

 

With (7.186) we get

 . (7.187)

On the other hand, using (7.178) yields
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Finally with (7.186), we get

 . (7.188)

The two equations (7.187) and (7.188) are the wave equations for the potentials A
and ϕ. They are inhomogeneous if there are currents or charges involved. The two
inhomogeneous wave equations are equivalent to the four Maxwell equations.
They serve to calculate the potentials A and ϕ when the current density  and
charge density  are given. With some limitations, these may be chosen
largely arbitrarily. The continuity equation

 

is also a consequence of the inhomogeneous wave equations, just as it was before a
consequence of Maxwell’s equations. This can be immediately verified by
inspection when calculating  in (7.187) and  in (7.188) while also
considering the assumed Lorentz gauge. If we try to solve eqs. (7.187), (7.188)
with incompatible current densities  and charge densities , then we
end up in contradictions. For instance, the resulting potentials will not satisfy the
Lorentz gauge as required.

As a particularly simple example, let us take a plane wave. The particular
solution of the wave equations (7.187), (7.188) for  and  are the
following plane waves:

 

with the requirement that

 .

The Lorentz gauge mandates

 . 

If we split  into a part parallel to  and one perpendicular to it:
 ,

then we may write

 ,
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i.e.,

 .

Applying (7.184) gives
 ,

or

 

For the magnetic field, one obtains with (7.183) and in analogy to (7.85)
 .

Thus, ultimately,  is irrelevant and may be dropped altogether. When 
then also  and the fields result exclusively from A:

 .

Thus, one can describe a plane wave by means of a vector potential A which is
proportional to the electric wave:

 .

7.4.2 Solution of the Inhomogeneous Wave Equations (Retardation)

In the presence of charges or currents, the wave equations for A and ϕ become
inhomogeneous. This poses the question on how to solve these, which we will
discuss for ϕ in conjunction with eq. (7.188). As long as we use Cartesian
coordinates, this result can easily be ported to the three components of (7.187).
First, however, we need to deal with the following equation:

 . (7.189)

We will start with a time dependent charge at the origin 
 , (7.190)

and later generalize the result. This problem is spherically symmetric. Furthermore,
there are no volume charges for . Therefore, using (3.43) we can write 

 .

Re-writing this a little gives
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 .

D’Alembert’s general solution for this equation is

 . (7.191)

 describes a process originating at the origin, while  describes a process
terminating at the origin. In other words,  describes an effect traveling with the
speed of light from the origin to a point a distance r away, where it arrives at time

 .

For this reason,  is called the retarded (delayed) solution.
Conversely,  may not be caused by processes at the origin, since they would
have arrived even before their cause (namely at time ).   is therefore
called the advanced solution. This contradicts the causality principle and,
therefore, may not be considered. Only   has physical meaning. This additional
requirement is called the condition of outward radiation. Consequently, the
potential has to be of the form

 . (7.192)

Also, for  the potential must be

 . (7.193)

Overall, the potential for the time dependent charge at the origin becomes:

 . (7.194)

The potential of an arbitrary charge distribution can be calculated by superposition.
Consider the volume charges

 .
Their share in the volume element  at location  is

 .
Its contribution to the potential is given by

 .

Overall, the potential becomes then
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 . (7.195)

In similar manner we find the solution to the components of the vector potential

 (7.196)

It shall be emphasized again, that the quantities  and  in the solutions
(7.195) and (7.196) have to satisfy the continuity equation. If, and only if this is the
case, then the potentials described in (7.195) and (7.196) satisfy the Lorentz gauge.
Similarly to the case of magnetostatics (see Sect. 5.1), the Lorentz gauge is not a
consequence of continuity (as sometimes claimed). For every gauge choice, there
will be contradictions if the continuity equation is violated.

Let us specifically look at a charged particle moving along a given trajectory
 then:

 

and 
 .

With this, eqs. (7.195) and (7.196) yield the so-called Liénard-Wiechert potentials,
which we will discuss in appendix A4.

7.4.3 The Electric Hertz Vector

The Lorentz gauge (7.186) makes it seemingly dispensable to work with two
potentials A and ϕ, since ϕ can be eliminated by means of this formula. We will
pursue this and define a new vector , the electric Hertz vector in the following
way:

 . (7.197)

It follows form (7.186) that 

 .

and we may substitute 
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 . (7.198)

Thus, we can express ϕ and A by means of . The fields result from (7.183) and
(7.184):

 , (7.199)

 . (7.200)

7.4.4 Vector Potential for D and Magnetic Hertz Vector

For a region, free of volume charges, one finds according to (7.178)
 

and therefore, D may be expressed as
 . (7.201)

(Note that we use  to represent the electric vector potential. The asterisk shall
differentiate it from the magnetic vector potential A and here, is not meant to
indicate the complex conjugate. This applies also to the quantity , which we will
introduce shortly.) If the region is current free, then according to (7.176)

,

,

i.e.,

 . (7.202)

The two eqs.  (7.201) and (7.202) are analogous to eqs.  (7.183), (7.184).  is a
new kind of vector potential and  a scalar potential for H, which we have met
before under a different notation (see Sect. 5.1, eq. (5.22) in particular). With the
fields of (7.201) and (7.202), eqs. (7.176) and (7.178) are automatically satisfied. 
One also needs to consider the other two of Maxwell’s equations. Using (7.175)
one gets:

 

or

 .
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Gradient and time derivative commute. Regarding  and , one has similar
freedom as for  and . Choosing again the Lorentz gauge,

 , (7.203)

from which one obtains

 . (7.204)

Finally, with (7.177) one finds

 

i.e.,

 . (7.205)

We conclude that the Lorentz gauge (7.203) is responsible that the homogeneous
wave equations (7.204) and (7.205) for  and  emerge from the Maxwell’s
equations (7.175) and (7.177). 

Now defining

 (7.206)

and 
 . (7.207)

This satisfies the Lorentz gauge (7.203) and one can calculate the fields of (7.201)
and (7.202) in the following way

 (7.208)

 . (7.209)

These two expressions should be compared to (7.199) and (7.200). The vector
introduced here is called the magnetic Hertz vector or also the Fitzgerald vector.

Because all this is largely in analogy to the previous section, we will be brief
here. It shall be emphasized once more, that every formula in this section has its
“dual” formula in a previous section.

According to (7.197) and (7.198), as well as (7.206) and (7.207), the Hertz
vectors allow one to calculate the potentials  and  as well as  and . Thus
one might say, the Hertz vectors are potentials to calculate potentials, which
sometimes is accounted for by calling them super potentials.
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7.4.5 Hertz Vectors and Dipole Moments 

The two Hertz vectors are a useful tool for many field calculations, and we will
take advantage of them in this context. 

In the general case, it is possible to calculate the fields from  and , and
then use superposition, so that according to (7.199), (7.200) and (7.208), (7.209),
one obtains

(7.210)

 . (7.211)

Now, based on these fields, we want to discuss the case when there are
“permanent” electric or magnetic dipoles present, besides the just described
polarization or magnetization effects caused by  and . Allow these “permanent”
dipole moments to be time dependent. The word “permanent” shall mean that these
thereby addressed dipoles are not caused or “induced” by an applied electric or
magnetic field. Maxwell’s equations (7.175) through (7.178) apply,

(7.212)

 . (7.213)

The induced polarization and magnetization effects are contained in the constants
 and . M and P represent the permanent fraction of the fields. Using this in

Maxwell’s equations gives:

(7.214)

 (7.215)

(7.216)

 . (7.217)

This is a very interesting form of Maxwell’s equations. It contains the polarization
current  which results from the displacement current , if D is chosen
according to (7.213). However, this is not necessary, as we have seen in Sect. 2.13.
The polarization current might contain an additional source free term. This would
mean that during polarization, the transport of charges does not take the shortest
route. Also interesting are the terms  and . If one takes advantage of
the concept of magnetic charges, then we might think of these in terms of  and

, as of eqs. 1.82, i.e., magnetic current densities and magnetic volume charges.
Although these charges are entirely fictitious, they may still be useful.

Now, we will find out if these equations can be satisfied by means of fields
given by (7.210) and (7.211). We substitute these and after some algebra, which we
skip, find in this order:
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 , (7.218)

, (7.219)

 , (7.220)

 , (7.221)

where we assumed that 
 

 .
Thus, there are no free charges and no free currents (nevertheless, there are bound
charges and bound currents, both magnetization currents and polarization currents.
From (7.218) and (7.220) we would at first conclude that 

 .

In this case, C is an arbitrary time independent vector. Considering a time
dependent magnetization M as the only cause of potentially existing fields
(described by ), then it turns out that  must vanish. A similar approach for
the two equations (7.219) and (7.221) eventually yields

(7.222)

 . (7.223)

These make it obvious that the wave equation also applies to the Hertz vectors. The
electric polarization and “magnetic polarization” (= Magnetization) are the
inhomogeneities. Therefore, the Hertz vectors are also called polarization
potentials. Solving eqs (7.222) and (7.223) for given M or P is carried out in the
same manner as described in Sect. 7.4.2, i.e., in analogy to the results (7.195) and
(7.196).

The homogeneous wave equations apply to regions where M or P vanish:
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 ,

i.e., 

 

 .

Now, instead of (7.210) and (7.211), and under the condition that  as well
as , we write

(7.224)

 . (7.225)

The next few sections shall be used to discuss radiation of an oscillating
electric dipole (dipole antenna) and the radiation of an oscillating magnetic dipole
(frame antenna). Furthermore, we shall study the wave propagation in cylindrical
wave guides. For all this, we will find that the just developed methods and
terminology will be extremely useful. 

7.4.6 Potentials for Uniformly Conductive Media without Volume 
Charges

In the above sections, we have discussed Maxwell’s equations for given current
densities g and volume charges ρ. The current densities can not be prescribed
inside a uniformly conductive medium, rather – applying Ohm’s law – one has

 .
Volume charges, one the other hand, will vanish very quickly and therefore, shall
be neglected. Thus, taking Maxwell’s equations in the following form:

(7.226)

 (7.227)

(7.228)

 . (7.229)

These are solved with the Ansatz
(7.230)
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 , (7.231)

which automatically satisfy eqs. (7.226) and (7.228). The other two, eqs. (7.227)
and (7.229), in conjunction with the gauge choice

 , (7.232)

yield the homogeneous equations

(7.233)

 . (7.234)

Letting 

 (7.235)

 , (7.236)

satisfies the gauge condition (7.232). Then, the wave equations (7.233), (7.234)
yields

 

which is satisfied if

 . (7.237)

With this, one can calculate B and E from  in the following manner:

 (7.238)

 . (7.239)

A different approach is also possible. Now, starting with the Ansatz
(7.240)

 , (7.241)
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which satisfy the two eqs. (7.227) and (7.229), while the other two eqs. (7.226) and
(7.228), together with the gauge choice

 , (7.242)

yields the homogeneous equations

(7.243)

 . (7.244)

Letting 

 (7.245)

 , (7.246)

satisfies the gauge condition (7.242). Now, the wave equations (7.243) and (7.244)
yield

 

 . (7.247)

And finally, one obtains

 . (7.248)

 . (7.249)

7.5 Hertz’s Dipole

7.5.1 Fields of Oscillating Dipoles

Consider a dipole located at the origin, oriented along the z-axis, and oscillating in
time:

 . (7.250)

Its polarization, defined as the spatial density of the dipole moment is
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 . (7.251)

The temporal change of the dipole moment is linked to currents. According to
Fig. 7.16, we get

 (7.252)

or

(7.253)

and therefore

 , (7.254)

where

 . (7.255)

To calculate the field of the oscillating dipole, one uses eq. (7.223), which may be
solved similarly to (7.188) and whose solution was (7.195). Since P has only a z-
component, the electric Hertz vector reduces to

 . (7.256)

 . (7.257)

 . (7.258)
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r is the distance from the observation point to the origin and, hence, to the
oscillating dipole. To use spherical coordinates is advisable. The transformed Hertz
vector is

 (7.259)

 (7.260)

 . (7.261)

The fields are calculated according to (7.210), (7.211) and (7.224), (7.225),
respectively, and yield

(7.262)

 , (7.263)

where it has to be pointed out that the expression to the far right of (7.263) is only
valid for locations where  (i.e., in our case, outside the origin). By means of
the formulas from Sect. 3.3.3 and some algebra, which we skip here, one obtains:

(7.264)

(7.265)

Of course, we might as well use (7.197) and (7.198), to calculate A and ϕ:
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 (7.266)

 . (7.267)

The effects of retardation occur in the ubiquitous argument . If the speed of
light were infinite, there would be no retardation. An interesting task is to
determine what kind of fields would result in this limit ( ). One finds

(7.268)

and 

 . (7.269)

Comparison with eqs. (2.63) reveals that this limit results in the “static” dipole
field. Its time dependency follows exactly all changes of the dipole at the origin,
i.e., all changes are instantaneously apparent everywhere in the entire space, as
expected for an infinite speed of light. For better appreciation of (7.269), we
express  in a slightly different form. Applying eqs. (7.254) and (7.255) gives

 . (7.270)

According to (5.20), this can be understood as the field of the current I in the
conductor element , i.e., it represents the field corresponding to Biot-Savart’s
law and is noticeable instantaneously in the entire space. In contrast to
magnetostatics, here it is permissible to regard current carrying line elements (i.e.,
currents with sources), because we also consider the correlated time dependent
charges (here, represented by the time dependent dipole). 
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The magnetic field has according to (7.265) only an azimuthal component.
Thus, the magnetic field lines are concentric circles around the z-axis. The electric
field lines are situated in the meridian plane . Their equations can be
stated, whereby it is beneficial to apply some analogy from the discussion of Sect.
5.11. With (7.263) we may write 

 . (7.271)

if

 ,

(7.272)

C has only an azimuthal component and therefore, the electric field becomes

 . (7.273)

Now, take the function  (it corresponds to the function  of Sect. 5.11,
but notice that there, we had used cylindrical coordinates, while here we use
spherical coordinates, which is the reason why  replaces r). We find its
gradient with (3.41)

 . (7.274)

This shows that 
 .

Thus E is perpendicular to the gradient of , i.e., E lies within the lines of
the meridian planes, along which  is constant. In other words, the function

 can be regarded as flux function. With

 , (7.275)

one can rewrite this:
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Omitting the insignificant factor , one can write the equations for the
field lines in the form

 . (7.276)

Fig. 7.17. illustrates several field lines for the dipole.
There are many ways to express the dipole fields of eqs. (7.264) and (7.265).

The following one is sometimes particularly useful:

(7.277)
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(7.278)

 , (7.279)

where
(7.280)

 . (7.281)

Notice that the phase angles , and  are function of r.

7.5.2 Far Field and Radiation Power

The representation of the dipole fields in eqs. (7.264) and (7.265) is a little difficult
to grasp. However, we will discover that only few of these terms are of sufficient
interest, at least with respect to radiation of electromagnetic waves by the
oscillating dipole. The components of E contain terms that are proportional to ,

, and , while  contain terms that are proportional to  and . This
result is particularly peculiar but also important and results from retardation, i.e., is
a consequence of the finite nature of c. In the “static” case, i.e. if the speed of light
were infinite, then E would be proportional to  and  to , i.e., it would
become very small for large distances.

When analyzing the energy flux through the surface of a sphere where a
dipole oscillates in its center reveals, that at large distances only those terms with

 make non vanishing contributions to the field of E and H. The reason is that
the corresponding part of the Poynting vector is proportional to , while the
surface of a sphere is proportional to . All other terms of the Poynting vector
decay faster (namely by , , ). Therefore, in the following we will take
interest only in the far field of the oscillating dipole.

 , (7.282)

 . (7.283)
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This is now a much simpler representation of the field, which behaves basically
like a plane wave (Fig. 7.18). It is purely transverse, E and H are perpendicular,
etc. However, its r and  dependency distinguishes it from a plane wave.

The angular distribution of the dipole radiation, given by  is illustrated in
Fig. 7.19 by a polar plot. The amplitude of the field vanishes in z-direction, i.e., the
direction of the dipole orientation. It is an easy task to verify that the endpoints
corresponding to   are circles

(7.284)

The Poynting vector of the far field is

 . (7.285)

It only has an r-component, which is

 

 . (7.286)

 is the energy radiated per unit time and unit area, i.e., the radiation power per
unit area. It depends on the direction and is proportional to . To find the total
radiation power requires to integrate over the surface of a sphere.

 . (7.287)
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Substituting 
(7.288)

gives initially 

 .

Obviously

and 

 .

Therefore

 . (7.289)

P is always positive. Its time average is the effective value or root mean square
(rms):

 . (7.290)

Eq. (7.255) allows one to eliminate  and replace it with :

 . (7.291)

Introducing the RMS current

allows to write the RMS power as

 . (7.292)

Finally, if one defines the so-called radiation resistance  by
 , (7.293)

then because of (7.292) one obtains

 . (7.294)

More specifically,  for vacuum is

 . (7.295)

This describes the radiation of an oscillating dipole, the so-called dipole antenna. 
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The antenna gain G is defined as the ratio of the maximum radiation power
 (direction of maximum power) over the average radiation power 

(averaging all directions). In the current case, with (7.286) and (7.289), this ratio is

 . (7.296)

Now, we proceed from the dipole antenna to the dual frame antenna.

7.6 Frame Antenna

An oscillating magnetic dipole radiates electromagnetic waves. Consider a
magnetic dipole 

 (7.297)

at the origin (Fig. 7.20). Its magnetization
 (7.298)

is caused by a circular current
 , (7.299)

where
 . (7.300)

This arrangement is also called frame antenna. The discussion here parallels
almost completely the discussion of the dipole antenna in the previous section.
Therefore, one may be rather brief. First, one needs to solve the wave equation
(7.222) with the specific magnetization given in (7.298), which in analogy to
eqs (7.256) through (7.258) yields

 , (7.301)
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 . (7.303)
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The fields can now be calculated from this and eqs. (7.210) and (7.211), or if
outside of the origin also from (7.224) and (7.225). Thus:

 , (7.304)

 . (7.305)

Some more algebra, which we skip, finally yields

(7.306)

 .

(7.307)

Here, as in Sect. 7.5, it is most advantageous to carry out the calculations in
spherical coordinates. The result can easily be verified by comparison of
eqs. (7.304) through (7.307) with the similar eqs. (7.262) through (7.265).
Obviously, one only needs to exchange a few quantities: E and H, replace  by

,  by , and observe the sign change during the transition between Eϕ and Hϕ
Again, one is mostly interested in the far field region:

 , (7.308)

 . (7.309)

The Poynting vector of the far field is
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 . (7.310)

It only has a radial component

 (7.311)

The radiated power is obtained thereof by integrating over the surface of a sphere.

 , (7.312)

and its time average is

 . (7.313)

Under consideration of (7.300), the RMS power results in

(7.314)

having defined the radiation resistance to

 . (7.315)

The radiation resistance for vacuum is

(7.316)

The antenna gain is again

 . (7.317)
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7.7 Waves in Cylindrical Wave Guides

7.7.1 Basic Equations

In this section, we will discuss propagation of waves in cylindrical wave guides of
arbitrary cross sections (Fig. 7.21). Its interior consists of a uniform, but not
necessarily ideal dielectric (i.e., it may be ). The outside space shall be of
infinite conductivity. We look for waves of the form 

(7.318)

 . (7.319)

There shall be no volume charges. Then, Maxwell’s equations apply in the
following form:

(7.320)

(7.321)

(7.322)

 . (7.323)

In light of the Ansatz in (7.318) and (7.319), one makes use the following relations

(7.324)

 . (7.325)

Applying this to (7.320) through (7.323) yields

(7.326)

Fig. 7.21
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(7.327)

(7.328)

(7.329)

(7.330)

(7.331)

(7.332)

 . (7.333)

These equations require an additional remark. If an Ansatz is proportional to
, then

 ,
and when taking the divergence, it immediately follows that 

 .
Consequently, eqs. (7.322) and (7.323) or (7.332) and (7.333) are dependent on the
other equations and thus are really redundant. One might as well omit them. 
Eqs. (7.326) and (7.330) allow to calculate  and  as functions of  and .
In similar manner, we may use eqs. (7.327) and (7.329) to calculate  and  as
functions of  and . The result is

(7.334)

(7.335)

(7.336)

 . (7.337)
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Each of these equations share the same denominator for which we introduce N as
an abbreviation. Thus:

 . (7.338)

One obtains the so-called Helmholtz equations when substituting these results into
(7.331) 

(7.339)

and (7.328)

 . (7.340)

We could have obtained the result (7.339), (7.340) directly from (7.8) and (7.9) by
means of the Ansatz of (7.318) and (7.319). We introduce the two dimensional
Laplacian in the x-y plane  or  to write:

(7.341)

 . (7.342)

This approach reduces the problem to solving these two, two-dimensional
Helmholtz equations in the x-y-plane. After having found  and  from these
equations and under consideration of the boundary conditions, all other field
components can be obtained from (7.334) through (7.337).

Some restrictions apply. Initially we have to require that the denominator
does not vanish. Note however, that  or  does not necessarily cause
the other components to vanish. They will not vanish if the denominator N vanishes
simultaneously. In other words: For pure transverse waves, waves which are
transverse with respect to both E and H, the so-called TEM waves, the following
dispersion relation applies.

 . (7.343)

We have met this relation before when we studied plane waves, which are a special
case of TEM waves (see Section 7.2, in particular eq. 7.83). We will initially
exclude TEM waves from our discussion, but will return to them later.

If , then at least one of the two quantities  or  has to be non-zero.
It is possible to compose an arbitrary wave from a combination of waves were

 but , as well as if  but . One set is transverse with
respect to H and called TM waves, while the other set is transverse with respect to
H and called TE waves.

Overall, there are three different types of waves, TM waves, TE waves, and
TEM waves. We shall discuss each one separately in above order. 

We have already encountered simple cases of TM and TE waves in Sect.
7.1.6.
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7.7.2 TM Waves

For , we have to solve the Helmholtz equation for  (7.341) and the
remaining field components result from (7.334) through (7.337). The same result
can be obtained when starting from an electric Hertz vector which only has a z-
component ( ). It has to satisfy the wave equation (7.237), which in turn, leads
to an equation of type (7.341):

 . (7.344)

For the fields, eqs. (7.238) and (7.239) apply. And specifically for the current case
one obtains

(7.345)

 . (7.346)

For the individual components of E and H we obtain:

(7.347)

These are exactly those fields, which one would obtain from (7.334) through
(7.337) if we let . 

Obviously, 
 , (7.348)

revealing that E and H are perpendicular.
The tangential component of E has to vanish on the boundary towards the

infinitely conducting medium. The perpendicular component of H has to vanish
there as well. This is a consequence of the mandate for continuity of the respective
components and thereby, all field components have to vanish in the ideal
conductor. Therefore on the boundary, it has to be , i.e. is must be

 . (7.349)

This condition automatically satisfies all other conditions. A consequence of
(7.347) is that E is perpendicular to the boundary, i.e., does not have a parallel
component. H, on the other hand, is perpendicular to E everywhere, thus H has no
component perpendicular to the boundary. Therefore, we need to solve eq. (7.344)
with the boundary conditions (7.349). Thus, the problem of a TM wave is a two-
dimensional Dirichlet boundary value problem. 

Our conclusions are independent from our previous choice of Cartesian
coordinates. It is permissible to transform to any other coordinate system. 

Another conclusion of eqs. (7.347) is that  is constant on the magnetic
field lines, and thus can be regarded as a flux function.
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7.7.3 TE Waves

TE waves can be dealt with in similar manner, if we start from a magnetic Hertz
vector which has only a z-component ( ). It satisfies the wave equation (7.247),
which for the current case takes the from

 . (7.350)

The field equations are based on (7.248) and (7.249) and yield for our specific
case:

(7.351)

 . (7.352)

For the individual components we obtain:

(7.353)

Here again:
 . (7.354)

On the boundary, H may not have a perpendicular component. From (7.353)
follows that on the boundary it has to be:

 , (7.355)

where the subscript n shall describe the normal component. This is now a Neumann
boundary value problem. This also ensures that the parallel components of E
vanish on the boundary, because E and H are perpendicular to each other.  is
constant along the electric field lines and thus represents their flux function.

7.7.4 TEM Waves

Now, we shall assume that all z-components vanish:
(7.356)

 . (7.357)

With this, eqs. (7.326) through (7.333) yield:
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 . (7.358)

When eliminating, for example,  and  by means of the first two equations,
one realizes that all equations are satisfied if

 , (7.359)

as claimed earlier (7.343) and if it is also

(7.360)

and

 . (7.361)

The last two equations signify that the H field is both, source-free and irrotational.
It is irrotational because there are no currents in z-direction which could create a
curl. Notice that eq. (7.361) is derived from (7.331) which contains , the free
current in the conductor and , the displacement current in z-direction.

Another consequence from (7.358) is that for TEM waves we also have:
 . (7.362)

One can show that the fields given in (7.347) and (7.353) satisfy eqs. (7.358), if we
take  while  and  satisfy the corresponding eqs. (7.344) and
(7.350), respectively. This context also requires one to check the boundary
conditions given in eqs. (7.349) and (7.355). While (7.355) remains unchanged,
now  is no longer required to vanish on the boundary. It suffices if  is
constant:

 . (7.363)

TEM waves can not exist in every wave guide. To appreciate this, let us look at a
wave guide with a “simply connected” cross section (Fig. 7.22). The H lines on the
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boundary have to be parallel to it and their path has to qualitatively look like
sketched in Fig. 7.22. However, this is impossible because the integral 
would be nonzero, even though there are no currents inside which could account
for this. The situation changes if we introduce a multiply connected cross section as
shown in Fig. 7.23. In this case, the cause for a non-vanishing integral 
could be attributed to one or more internal conductors. In practice, wave guides of
this kind occur frequently, for example, in the form of a coaxial cable. The so-
called transmission theory solves these kind of problems by means of the
telegrapher's equations. However, transmission theory is an approximation and
does not allow to describe all types of waves, possible in such a wave guide. Only
field theory allows for this. We will return later to the relation between field theory
and transmission theory. 

κ ∞=

Fig. 7.22

"H ds•

Fig. 7.23

internal conductor
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κ ∞=
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Fig. 7.24 illustrates qualitatively the structure of the magnetic field in wave
guides with several internal conductors – the figure shows three conductors. They

Fig. 7.24
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may carry currents, all in the same direction (Fig. 7.24a,b) or different directions
(Fig. 7.24c,d). In the general case, there will be two stagnation lines where the field

Fig. 7.24
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S2

S1

S2
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vanishes (Fig. 7.24a,c,d). For special values of currents, the two lines may
degenerate to a single one (Fig. 7.24b). The force lines (separatrices) which pass
through the stagnation lines separate the regions of the cross section into sections
of different field structure, as we have encountered before in electrostatics (Sect.
2.4) and in magnetostatics (Sect. 5.2.1). The difference between Fig. 7.24c and d is
merely that the overall current is positive in Fig. 7.24c and negative in Fig. 7.24d.

7.8 Rectangular Wave Guide

7.8.1 Separation of Variables

Our first example in applying the theory of the previous section shall be for a wave
in a wave guide of the shape as shown in Fig. 7.25, with . We will limit the
discussion to the case of an insulator ( ).  (or more specifically  in
case of TM waves and  for TE waves) has to satisfy the Helmholtz equation
(7.344) or (7.350), respectively. 

(7.364)

If one now separates according to the model given in Sect. 3.5, then we obtain 
in the form:

,
(7.365)

where initially , , ,  are arbitrary constants. Furthermore, to satisfy
(7.364), the dispersion relation has to be fulfilled

 . (7.366)

Fig. 7.25  

x

y

z

κ 0=
ε µ,

a

b

0

a b≥
κ 0= Πz Πez

Πmz

∂2

∂x2
-------- ∂2

∂y2
-------- εµω2 kz

2–+ + 
  Πz 0=

Πz

Πz X x( ) Y y( ) Z z( )⋅ ⋅=

         Πz C1 kxxsin C2 kxcos x+( ) C3 kyysin C4 kycos y+( ) i ωt kzz–( )[ ]exp=

C1 C2 C3 C4

kx
2 ky

2 kz
2+ + εµω2=



476 Time Dependent Problems II (Electromagnetic Waves)

7.8.2 TM Waves in a Rectangular Wave Guide

Because of the boundary conditions (7.349),  for , , ,
and . This requires that . Furthermore, only certain values for

 and  are possible, namely, as before in Sect. 3.5.1, eqs. (3.70) and (3.71):

(7.367)

 . (7.368)

This leaves 
 , (7.369)

from which the fields can be calculated according to (7.347):

 . (7.370)

All possible TM waves are described by this set of equations. Two whole
numbers, n, m correspond to every possible type of wave. This wave is called

 wave. Obviously, in order for not all fields to vanish, it has to have 
and . Ergo, there are no , , or  waves. 
The dispersion relation (7.366), together with (7.367) and (7.368) yields

 . (7.371)

Form this one finds the phase velocity of the wave

 , (7.372)

and for its group velocity

 , (7.373)

so that 
 . (7.374)

We have found this result before in a special case, eq. (7.68). If one calculates the
average energy per unit length for the wave guide and multiply this by , then
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one obtains the same energy transfer as it results from the z-component of the
Poynting vector, averaged over time and space (cross section). We conclude, here
as well, the group velocity can be regarded as the velocity of the energy transfer.

If  is the wave length inside the wave guide in the z-direction, and  its
corresponding wave length in the free space, then

(7.375)

and

 . (7.376)

This means that  is always greater than .  even becomes infinite for 

 , (7.377)

 (or ) becomes imaginary for . The related fields can not propagate
inside the wave guide. The related wave length  is called the critical wave length
of the  wave. It is also the largest free space wave length for which this type
of wave can exist. The related angular frequency, the cutoff frequency , is the
lowest frequency for which propagation inside the wave guide is possible:

 . (7.378)

The largest among all possible critical wave lengths belongs to the  wave,
which is

 . (7.379)

Fig. 7.26 provides a qualitative picture of the fields for a few wave types, namely
their projection onto the cross section. Take into account when interpreting these
pictures, that the electric field has a z-component also. When the electric fields in
those pictures appear to have sources or sinks, then this deception is simply caused
by the projection, while in reality the field is diverted at those points into the z-
direction. These z-fields are the displacement currents, which create the magnetic
fields of the wave.

At the surface, the electric field has perpendicular components and the
magnetic field has tangential components, which cause surface charges and surface
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currents there. Their fields can be calculated from the boundary conditions, which
are time dependent. Of course, currents and charges have to meet the continuity
equation, which in the current case takes the form:

 ,

where  shall signify the two dimensional divergence operator in a plane. Of
course,  replaces  and  replaces .

7.8.3 TE Waves in a Rectangular Wave Guide

In this case, the boundary condition (7.355) requires that .
Furthermore, the wave numbers  and  have to satisfy (7.367) and (7.368).
Therefore:

 . (7.380)

With (7.353) the  wave becomes:
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 . (7.381)

Formulas (7.371) through (7.378) apply to TE waves unchanged.
In contrast to the TM wave, the TE wave has non-vanishing fields, if at least

one of the two integers n, m is nonzero. That is to say, there is no  wave,
however,  and  waves exist. The largest critical wave length belongs to
the  wave and is determined by (7.377)

 , (7.382)

while the relation for the  wave is
 . (7.383)

Fig. 7.27 provides a few pictures of various TE wave modes. What was said
in conjunction with Fig. 7.26 applies here in like manner. Of course, the magnetic
field lines do not have sources or sinks. Whenever their projection onto the cross-
sectional area suggests otherwise, then this is because the projection hides the z-
component of the field.

7.8.4 TEM waves

Recall from our general discussion in Sect. 7.7.4 that no TEM wave can exist in
simply connected rectangular wave guides (as is the case in every simply
connected wave guide of any shape). This is also obvious from (7.370) and (7.381).
For the z-components of E and H to vanish requires that

 .

This, in turn requires that , whereby all other field components vanish
as well. We know already that neither  nor  waves exist.

On the other hand, TEM waves do exist in multiply connected rectangular
wave guides, for example, of the kind depicted in Fig. 7.28. The related theory is
rather complicated, however, and shall not be discussed in this text. A remark to
avoid misconception: TEM waves are possible between infinite parallel plates
(Fig. 7.29). The difference between these and an ordinary rectangular wave guide
is that the infinite plates do not impose a limit on . A possible wave is therefore
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Fig. 7.27       
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 .

This is nothing other than a plane wave, which however, does not extend to infinity
in the y-direction., i.e., in the direction of the electric field vector. This is possible
because a perpendicular component of E is permissible on the boundary. There, it
causes the necessary surface charges. A different polarization is not possible
because  and  have to vanish on the boundary. Notice, that the case of infinite
parallel plates is not a result of the limit of a rectangular wave guide with ,
at least not with respect to the TEM waves. The rectangular wave guide does not
allow TEM waves for any value of a, not even for infinitely large a. Of course, all
kinds of TM and TE waves are possible between the parallel plates. Those can
definitely be derived from simply connected rectangular wave guides as the limit

. 

7.9 Rectangular Cavities

A cavity bounded by conductors is a resonant cavity. It can hold an electromagnetic
oscillation. The calculation of the various oscillations that are possible in such a
resonant cavity is in general mathematically difficult. However, for a cuboid cavity,
the problem can be reduced to the just discussed rectangular wave guide. 

If we let two like waves propagate in opposite directions, then their
superposition gives a standing wave, just as we had discussed for a plane wave in
Sect. 7.1.5. 
A standing TM wave can be described by 

 . (7.384)

A standing TE wave can be described by 
 . (7.385)

 and  satisfy their corresponding wave equations for  if

Fig. 7.29      
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 . (7.386)

The corresponding fields can be found with (7.238), (7.239) and (7.248),
(7.249). For TM waves

(7.387)

and for TE waves

 . (7.388)

All these fields satisfy the required boundary conditions of the previously
discussed rectangular wave guide, if

(7.389)

and

 . (7.390)

We can create a cuboidal resonant cavity if we cut a piece of length d from this
wave guide and insert a reflecting wall (i.e., an infinitely conducting wall) at

 and  (Fig. 7.30). The additional walls impose additional boundary
conditions:

Our Ansatz already satisfies the boundary condition for , which was chosen
with this in mind. For , the boundary conditions require

 . (7.391)

kx
2 ky

2 kz
2+ + k2 εµω2 ω2

c2
------= = =

   Ex kxkzCe kxcos x kyysin kzzsin–=

Ey kykzCe kxsin x kycos y kzzsin–=

Ez kx
2 ky

2+( )Ce kxxsin kyysin kzcos z=

   Hx +iωεkyCe kxsin x kycos y kzcos z=

Hy iωεkxCe kxcos x kyysin kzcos z   –=

Hz 0= 











iωt[ ]exp⋅

Ex +iωµkyCm kxcos x kysin y kzzsin=

Ey iωµkxCm kxxsin kycos y kzzsin    –=

Ez    0=

Hx kxkzCm kxsin x kycos y kzcos z–=

Hy kykzCm kxcos x kysin y kzcos z–=

Hz kx
2 ky

2+( )Cm kxcos x kycos y kzzsin= 











iωt[ ]exp⋅

kx
nπ
a

------=

ky
mπ
b

-------=

z 0= z d=

Ex Ey 0= =

Hz 0= 

   for  z 0  =

   and z d .=

z 0=
z d=

kz
pπ
d

------= p whole number



7.9   Rectangular Cavities 483

Overall, using (7.386) and (7.389) through (7.391), yield the following resonant
angular frequencies 

(7.392)

as result for the  and  waves of the resonant cavity. 
The totality of all resonant frequencies (eigenfrequencies, i.e. frequencies to the
respective eigenvalues) is obtained by permutation of all permissible combinations
of n, m, p. The requirement for these combinations is that at least two of the
numbers have to be non-zero. Furthermore, there may be no , no ,
and no , while, , , and  waves are permissible, as is
obvious from (7.387) and (7.388), respectively.

A resonant cavity has certain common properties with an LC oscillator
(neglecting the fact that the LC oscillator looses energy by radiation, while the
resonant cavity is unable to radiate energy, at least in the approximation of the ideal
conducting walls). Both possess a constant overall energy, which is composed of
electric energy ( , for the LC oscillator) and of magnetic energy
( , for the LC oscillator) whereby the two forms of energy mutually
transform continuously. The energy for the resonant cavity in case of the TM wave
is derived from (7.387)

(7.393)

and for the TE wave, derived from (7.388) (just reversed)

. (7.394)

In both cases,  is the total energy. This behavior is illustrated in Fig. 7.31.
Apart from the fact that a resonant cavity possesses an infinite number of

resonant frequencies, while an LC oscillator has only one, the major other
difference is that the magnetic and electric fields of the resonant cavity are spatially
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united, while they are spatially separated for the LC oscillator, namely in the two
distinct components. Nevertheless, the transition is gradual. It is possible to start
from an LC oscillator and make a smooth transition into a resonant cavity
(Fig. 7.32).

Notice that for the standing waves of this section as described by eqs. (7.384),
(7.385), (7.387), (7.388) (contrary to the previous sections) it is not permissible to
replace the differential operator by . The reason is that the standing wave is
created by superposition of the two functions  and , which,
in the said equation., resulted in the sine and cosine functions, respectively. This
had prevented us to obtain the fields of eq. (7.387) and (7.388) from eqs. (7.347)
and (7.353), rather we had to go back to the more generally applicable eqs. (7.238),
(7.239), (7.248), and (7.249). 

It shall also be pointed out that eqs. (7.389) (7.390), (7.391) – just as
analogous equations for mechanical oscillations and waves – have a plausible

Fig. 7.31     
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explanation. Consider, for example, a string, mounted at both ends. The relation for
this vibrating string is

,

where a is the length of the string and n is a whole number (Fig. 7.33). For a wave
guide, this applies for waves in x and y direction, while it applies to all three
directions in case of the resonant cavity. The waves in the x and y direction of a
wave guide are standing waves, while the wave in z direction is travelling. In case
of the resonant cavity, all three directions carry standing waves. Intuitively, one
may picture a standing wave by superposition of an incident wave and waves,
reflected at the boundary (the reader shall thereby be reminded of sects. 7.1.5 and
7.1.6).

7.10 Circular Wave Guide

7.10.1 Separation of Variables

For circular cylindrical wave guides, whether simply or multiply connected
(Fig. 7.34), the best approach is to use cylindrical coordinates. According to
eq. (3.33), the two-dimensional Laplacian  in the x-y-plane takes the form

 . (7.395)

The formulas applicable to  and  are (7.344) and (7.350),
respectively, where N is given by (7.338). Therefore we obtain

 . (7.396)

Separating like in Sect. 3.7 gives
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 . (7.397)

We could have picked a sine instead of the cosine, but this does not constitute a
significant difference.  is a general cylinder function:

. (7.398)

The specific form of  given in (7.397) allows to solve an abundance of
problems. Notice, that in general, it has to be , if the area under
consideration includes the z-axis, since  diverges for . However, if the
area does not include the z-axis, then the complete solution (7.398) has to be used. 

Fig. 7.35 shows a number of arrangements, which can be solved using
(7.397). First, there is the “normal” cylindrical wave guide (Fig. 7.35a),
characterized by an ideal insulator surrounded by an ideal conductor. From this, the
coaxial cable (Fig. 7.35b) emerges when another ideal conductor is inserted inside
the insulator. Fig. 7.35c shows the so-called Sommerfeld conductor, where a
medium of finite conductivity is surrounded by an ideal insulator. The Harms-
Goubau conductor of Fig. 7.35d has a conductor of finite conductivity at its center
and is surrounded by two layers of dielectrics with different permittivity. Another
interesting case is the so-called light conductor or light guide, shown in Fig. 7.35e,
an  ar rangement  impor tant  in  opt ics  and has  ga ined  s igni f icance  in
telecommunications as well. Subsequently, we will limit our discussion to ordinary
wave guides and the coaxial cable. The limit of ideal insulators and media with
infinite conductivity can – with the exception of super conductors – not be realized
at all or only approximately. Using these limits, however, simplifies the theoretical
analysis significantly, without misrepresenting the material points of the results.

Fig. 7.34    
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7.10.2 TM Waves in a Circular Cylindrical Wave Guide

For the ordinary wave guide, we have to let  in eq.  (7.398). Here, we are
interested in TM waves and thus with (7.397) find

 . (7.399)

According to (7.349) we also have to ensure that
 . (7.400)

It follows that  may not assume every value. If, for instance,  is the radius of
the wave guide, then it must be

 . (7.401)

We have already found the zeros  of  in Sect. 3.7.3.3.:
 . (7.402)

If we only consider ideal insulators ( ), then with (7.338) we obtain

 . (7.403)

The associated wave is called the  wave of the wave guide. Its fields are
derived from eqs. (7.238) and (7.239):

Fig. 7.35
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 . (7.404)

Notice that  has to assume one of the values allowed by
eq. (7.402). It becomes clear from inspection that with this restriction, , , and

 vanish when , as it must be.  is the derivative of the Bessel function,
where the subject of derivative is its entire argument.  waves exist for

,  (i.e., N > 0). n = 0, N = 0 would result in a TEM wave, which is not
possible in the current case, and even more so, according to our general
conclusions regarding TEM waves.

Similar to the rectangular wave guide, we find the phase velocity from the
dispersion relation, here eq.  (7.403)

 (7.405)

and the group velocity is

 . (7.406)

The wave length in z-direction, the propagation direction in the wave guide is

 . (7.407)

 is the related free space wave length. The largest possible free space wave length
of the  wave is the critical wave length

 . (7.408)

A few values of  are listed in Tab. 7.1. Notice that the quantities with the
double index  represent the zeros of the Bessel functions. They are
dimensionless and should not be confused with the wave length , , , etc.
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7.10.3 TE Waves in a Circular Cylindrical Wave Guide

For TE waves we have
 , (7.409)

where

 , (7.410)

which requires that
 . (7.411)

If one addresses the zeros of  in their order by , then one obtains the
dispersion relation

 , (7.412)

and for  it becomes

 . (7.413)

In analogy to (7.405) and (7.406), one finds here again
 . (7.414)

The related fields of the  wave are determined by (7.248) and (7.249)

Table 7.1 The values  of 

1 2 3 4 5

0 2.40483 5.52008 8.65373 11.79153 14.93092
1 3.83171 7.01559 10.17347 13.32369 16.47063
2 5.13562 8.41724 11.61984 14.79595 17.95982
3 6.38016 9.76102 13.01520 16.22347 19.40942
4 7.58834 11.06471 14.37254 17.61597 20.82693
5 8.77148 12.33860 15.70017 18.98013 22.21780
6 9.93611 13.58929 17.00382 20.32079 23.58608
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 . (7.415)

N has to assume a value permitted by eq. (7.412). Eq. (7.407) applies to , if 
is replaced by . The critical wave length is found in analogy to (7.408)

 . (7.416)

A number of values for  is given in Tab. 7.2. This table and the one for 

make it particularly evident that the largest critical wave length of all TM and TE
waves belongs to the  wave, with a value of

 . (7.417)

Finally, we will present a few graphs, illustrating the field of some TM and
TE waves, possible in a circular cylindric wave guide (Fig. 7.36, Fig. 7.37).

7.10.4 The Coaxial Cable

An in depth discussion of the coaxial cable requires one to start with the solutions
(7.397), (7.398). However, we will not present the coaxial cable in its full

Table 7.2 The values  of 

1 2 3 4 5

0 3.8317 7.0156 10.1735 13.3237 16.4706
1 1.8412 5.3314 8.5363 11.7060 14.8636
2 3.0542 6.7061 9.9695 13.1704 16.3475
3 4.2012 8.0152 11.3459 14.5859 17.7888
4 5.3175 9.2824 12.6819 15.9641 19.1960
5 6.4156 10.5199 13.9872 17.3128 20.5755
6 7.5013 11.7349 15.2682 18.6374 21.9318
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generality, which would provide all of its TE and TM waves. We will limit
ourselves to the case , i.e., its TEM wave, which requires to solve
eq. (7.396) in its form

 . (7.418)

The Ansatz
(7.419)

yields an equation for :

 . (7.420)

Its general solution is
(7.421)

or
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 , (7.422)

which can also be obtained from the cylindrical functions when taking a limit. We
have met eq. (7.420) and its solutions (7.421) and (7.422) before in Sect. 3.7.3.5,
eqs. (3.262) through (3.264). The result for the Hertz vector is

(7.423)

and
 . (7.424)

Now one has the freedom to take  as either the z-component of the electric or
the magnetic Hertz vector and calculate the fields from (7.345), (7.346) or (7.351),
(7.352), respectively. Either way, after considering the boundary conditions (7.363)
and (7.364) at the outer conductor ( ) and at the inner conductor ( ) of
the coaxial cable, it turns out that there is only one case where not all fields are
identically zero (Fig. 7.38). This case requires that  and if one regards 
as , (7.345), (7.346) yield the fields (for ):

 . (7.425)
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This describes an electric field which is purely radial and a magnetic field that is
purely azimuthal. Fig. 7.38 illustrates this. Since

(7.426)

one finds

 , (7.427)

i.e., the wave behaves in this respect like a plane wave. There is no difficulty in
satisfying the boundary conditions, because there are neither components of E
parallel to the boundary, nor perpendicular components of H.  must decrease as

 so that E remains source-free, while  needs to decrease as  so that H
remains irrotational.

For the sake of completeness, it shall be noted that the just derived TEM wave
can also be obtained from

 .

For 

 ,

is the most general solution of (7.418). If we take  for , then it has to be
 because of (7.363), which in conjunction with  provides the

fields given in (7.425). If we take  for , then it has to be  because
of (7.355), which in conjunction with  yields  as given above. With
the appropriate choice of , this provides the fields (7.425). 

Wave types are also called modes. The just found TEM mode of the coaxial
cable is very similar to the TEM wave between two parallel plates. The two
converge for . We could think of Fig. 7.29 as being a piece of an annular
region with a very large radius. 

According to (7.426), the TEM wave propagates with the speed of light for
that particular dielectric:

 . (7.428)

The just found wave is also used in transmission theory, where the telegrapher's
equation is used instead of the wave equation. To better illustrate the relation, we
shall now derive the telegrapher's equation and briefly discuss it.

7.10.5 Telegrapher's Equation

To derive the telegrapher's equation, one imagines the transmission line as being a
continuous analog of a network circuit, where a transmission line is nothing more
than a multiply connected wave guide of arbitrary cross section. The coaxial cable
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of Fig. 7.38 is a special case thereof. The two-gate shown in Fig. 7.39 corresponds
to a line element of length dz. 

The quantities  are in the same order: conductance, capacitance,
inductance, resistance, all per unit length of the transmission line. With  it
follows from Fig. 7.39:

(7.429)

 . (7.430)

Differentiating the first equation for z yields:

 .

Substituting  from the second equation yields

 ,

or after rearranging 

 . (7.431)

Similarly for the second equation

 ,

and substituting  from the first equation yields

 . (7.432)

Notice that  and  satisfy the same telegrapher's equation. In the
simplest case, the line is free of losses, this means that 

Fig. 7.39

1
2
--L'dzV z( )

1
2
--R'dz

I z( ) I z( )
z∂

∂I dz+

I z( )

1
2
--L'dz 1

2
--R'dz

I z( )
z∂

∂I dz+

V z( )
z∂

∂Vdz+G'dz C 'dz

G' C' L' R', , ,
dz 0→

G'V C'
t∂

∂V
z∂

∂I+ + 0=

L'
t∂

∂I R'I
z∂

∂V+ + 0=

G'
z∂

∂V C' ∂
2V

∂t∂z
---------- ∂2I

∂z2
--------+ + 0=

∂V ∂z⁄

G' L'
t∂

∂I– R'I– 
  C' ∂

∂t
---- L'

t∂
∂I– R'I– 

  ∂2I
∂z2
--------+ + 0=

   ∂
2I

∂z2
------- L'C'∂

2I
∂t2
------- R'C' L'G'+( )

t∂
∂I G'R'I+ +    =

L' ∂
∂t
----∂I

∂z
----- R'

z∂
∂I ∂2V

∂z2
---------+ + 0=

∂I ∂z⁄

   ∂
2V

∂z2
--------- L'C'∂

2V
∂t2
--------- R'C' L'G'+( )

t∂
∂V G'R'V+ +    =

I z t,( ) V z t,( )



7.11   The Wave Guide as a Variational Problem 495

(7.433)

(7.434)

and therefore

(7.435)

 . (7.436)

One can prove that it must always be
 . (7.437)

We will skip the general proof. For the case of the coaxial cable, (7.437) can be
verified by means of eqs. (2.98) and (5.210), when replacing  by  and  by

. 
For V we try the following Ansatz

(7.438)

and obtain from (7.435)
 ,

i.e., the usual dispersion relation for TEM waves in multiply connected wave
guides (for example, in a coaxial cable, although above relation is by no means
limited to the coaxial cable).

The current I creates the magnetic field (in case of the coaxial cable H is
purely azimuthal), the EMF V creates the electric field between inside and outside
conductor (for the coaxial cable, E is purely radial). 

We will not advance any deeper into the matter of transmission theory, as our
purpose was only to highlight the relation between transmission theory and field
theory. 

7.11 The Wave Guide as a Variational Problem

From a mathematical perspective, solving wave guide problems means to solve the
Helmholtz equation in its form (7.344) or (7.350)

 , (7.439)

where  is the two-dimensional Laplacian, here in Cartesian coordinates:

 . (7.440)

We might as well use a different coordinate system. In any case, according to
(7.349), the boundary mandates for TM waves 

, (7.441)
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and according to (7.355) for TE waves 

 . (7.442)

From solving a number of example problems above, we found that there are
only certain functions  that satisfy the boundary conditions. Related are certain
values of N. These functions are the eigenfunctions and the related N-values are the
eigenvalues of the problem. The eigenfunctions form a complete system of
orthogonal functions (Sect. 3.6). These are trigonometric functions in case of the
rectangular wave guides and in case of circular cylindrical wave guides, these are
Bessel functions. These functions are the basis to expand other functions in form of
Fourier or Fourier-Bessel series, as we have done multiple times above. 

Now address the eigenvalues by 

and their related eigenfunctions by
 ,

where we still refer to the z-component, but have dropped the index z to simplify.
The order of the eigenvalues shall be such that 

 . (7.443)

It is possible to show that the various eigenfunctions belonging to different
eigenvalues are, indeed, orthogonal to each other. Also possible is to have several
eigenfunctions to the same eigenvalue where the eigenfunctions are still
orthogonal. Then the eigenfunctions and eigenvalues are said to be “degenerate”.
For simplicity reasons, we will exclude this case from our discussion, which does
not limit the possible conclusions we will draw. Now, we will consider two
eigenfunctions  and  with their eigenvalues  and . With (7.439), one
finds: 

(7.444)

 . (7.445)

Multiplying the first equation by  and the second by  yields
(7.446)

 . (7.447)

Then we subtract them and integrate
 , (7.448)

where the area of integration is the cross section. Analogous to Green’s theorem in
the three-dimensional space (3.47), there is a Green’s theorem for the plane (which
can be derived from the one in three-dimensional space). It reads as follows (see
Sect. 3.4.2):

n∂
∂Πz 0=
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 . (7.449)

Therefore, with the boundary conditions (7.441) or (7.442), we have

 ,

i.e.,  requires that 
 , (7.450)

which proves our claim that the two functions  and  are orthogonal. 
Now, consider an arbitrary, well behaved function  and its series

representation:

 . (7.451)

For the case of a rectangular wave guide, this would be a two-dimensional Fourier
series, for the case of a TM wave in a circular cylinder, this would be a double
series, where the -dependency is represented by a Fourier series while the r-
dependency expands in a Fourier-Bessel series.

Let us investigate the following expression:

 . (7.452)

Using (7.451) we obtain

 . (7.453)

We have used the fact that (7.450) permits us to write
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 , (7.454)

where  is an arbitrary normalizing factor. We have determined that
 . (7.455)

The equal sign applies if, and only if
 .

In other words:  is nothing else than the lowest value which the expression F
may take and the function  for which it assumes this value is the eigenfunction

. Now we have transformed the wave guide problem into a variational problem.
The task is now to find the function  that fulfills the given boundary conditions,
while minimizing the expression F. Then, after finding  we continue to
determine . Now, we need to find the function  which makes the expression F
as small as possible, while  still needs to satisfy the given boundary conditions
and, in addition, has to be perpendicular to . This requires  and thus
obtain

 . (7.456)

The equal sign now applies if . 
This, from a formal perspective interesting remark, shall conclude the

problem of waves in waveguides. Many more problems in physics, and in
electromagnetic field theory in particular, can be regarded as variational problems.
This is very useful because variation problems are a very good basis for
approximation methods and numerical calculations. We will revisit this subject in
Chapter 8.

7.12 Boundary and Initial Value Problems

In Chapter 6, we discussed the quasi-stationary approximation, while Chapter 7
was dedicated to the complete Maxwellian equations. From a formal perspective,
the quasi-stationary case requires to solve the diffusion equation, in our case the
wave equation, in one form or another. In its general form, the wave equation also
contains a diffusion term. For instance, consider the magnetic field B, then with
(7.9) we write

 , (7.457)

from which emerges the diffusion equation when neglecting the propagation terms

 . (7.458)
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At various times, we have discussed the limits of the quasi stationary theory and
the competing effects of diffusion and wave propagation (see Sect. 6.8. and also
Sect. 6.2). We shall revisit this discussion once more. For instance, one can solve
the general wave equation (7.457) by the same methods which we have used in
Chapter 6 to solve the diffusion equation. Then retroactively, we may let ,
which results in an undamped wave propagation in an ideal insulator, or
conversely, let  to obtain the limit of diffusion. 

To illustrate this, we will revisit two examples which we have already solved
in Chapter 6, but now we include the wave propagation term. First, the problem of
an initial field in the infinite, uniform space (Sect. 6.4) and second, the problem of
the half-space (Sect. 6.5).

At the same time, the solution of these two problems shall demonstrate the
general usefulness of methods previously used to solve initial value and boundary
value problems. 

7.12.1 The Initial Value Problem of the Infinite, Uniform Space

The task is to solve the problem given in Sect. 6.4 starting from the wave equation
(7.457). Now, the order of the differential equation with respect to the time is two
and, compared to before, this requires an additional initial value condition. We
want to find  for which the wave equation has the form

 . (7.459)

Furthermore, the initial value and the boundary conditions shall be:
(7.460)

(7.461)

(7.462)

 . (7.463)

The Laplace transform of eq. (7.459) gives 

(7.464)

where  has to satisfy the boundary conditions
(7.465)

 . (7.466)
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The transition from (7.459) to (7.464) is based on (6.51), together with the initial
values given by (7.462) and (7.463). The general solution of (7.464) is obtained
analogous to the solution of (6.79) by (6.80). Here one obtains:

 . (7.467)

We limit ourselves to the special case where 
(7.468)

 . (7.469)

It shall be noted that the dimension of  is that of B, while, because of the δ-
function, F has the dimensions of B multiplied by a length. Using (7.468) and
(7.469) in (7.467) gives

(7.470)

In order to satisfy the boundary conditions (7.465) and (7.466) one chooses 
(7.471)

(7.472)

which yields

 . (7.473)

The inverse Laplace transform gives the function

 .

(7.474)
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The symbol H represents Heaviside’s step function, defined in (3.55). In this case
one has

 (7.475)

The easiest proof is by means of the Laplace transform of (7.474) and then to find
expression (7.473) thereof. This could be done for example, by use of [5], vol. I p.
200, eq. (5) and (9), as well as p. 129 eq. (5). The latter formula is also called
“damping theorem”. 

Next, we will examine various limits of the problem’s solution (7.474). 
The limit  leaves only

 . (7.476)

The field, initially located at the origin, travels in equal halves in the positive and
the negative z-direction. The reason for this even split is found in the initial
conditions (7.468) and (7.469). In case of different initial conditions, the field
would split in a different manner into the left and right travelling field (wave). In
any case, both fractions will move without changing their shape. The reason is that
these are ordinary plane waves travelling inside an ideal insulator (dielectric), as
outlined in Sect. 7.1.2 and they behave exactly as expected. Of course, the
separation into left and right travelling parts is possible in an arbitrary manner and
is specified by the initial conditions. Fig. 7.40 illustrates this motion. It is possible
to study the limit of pure diffusion. To achieve this, one lets  in eq. (7.474),
or what amounts to the same, let . By means of the asymptotic formula
(3.181) for  and , one obtains 

, (7.477)

which would also result from (6.78) when letting . In this case,
the field spreads to an increasingly widening Gaussian curve (Fig. 7.41). By this,
one has found both limiting cases (Fig. 7.40 and Fig. 7.41) from the general
solution. The general case is given by damped δ-functions travelling left and right
with the speed of light. There is no field in front of them. However, they drag an
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umbrella of a diffusion field behind them. Fig. 7.42 illustrates this combination of
diffusion and wave propagation. One could say that it describes a compromise of
the trend shown in Figs. (7.40) and (7.41). 

Although it would have been useful for practical reasons, to carry out these
calculations with dimensionless quantities, we have refrained from doing so here
(in contrast to the derivations of Sect. 6.4). This allowed to keep the dependency on
quantities with dimensions like, for example, ε and κ immediately visible, which
simplifies the limiting process. If one wants to save writing by use of
dimensionless quantities, the best way to proceed is this:

 , (7.478)

 , (7.479)

with

 , (7.480)

 , (7.481)
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 . (7.482)

As a, so-to-speak, natural unit of time, we see the relaxation time , and as a
natural unit of the length, we take the distance through which light travels during
this time. 

The Fourier transformation is another very useful tool to solve problems of
the kind discussed here. This solution decomposes the initial field (wave packet)
into its Fourier components. The previously discussed dispersion relation (Sect.
7.2) defines the behavior of each of these components, which allows the
superposition of these packets at a later time. We will not discuss this method here,
but it is nicely presented in detail in [8].

7.12.2 The Boundary Value Problem of the Half-Space

We shall revisit the problem of Sect. 6.5. Again, the task is to solve the wave
equation 

(7.483)

now, however, in the half space  with the boundary conditions:
(7.484)

(7.485)

and the initial conditions:
(7.486)

 . (7.487)

The problem we have solved in Sect 6.5 was more general with respect to the initial
conditions. Conversely, there, we had one initial condition less. Using the Laplace
transform on eq. (7.483) gives:

 , (7.488)

while the boundary conditions in the p-domain become
(7.489)

 . (7.490)

For the solution we obtain

 . (7.491)
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(7.492)

which results in
(7.493)

and therefore

. (7.494)

The inverse Laplace transformation yields:

(7.495)

Here again, the best approach to prove this is by the transform of 
according to eq. (7.495). We achieve this by using for example, [5], Vol. I, p. 200,
equation (8), and p. 129, eq. (5), which is the previously mentioned “damping
theorem”.

Specifically  gives

 , (7.496)

that is, the field of the very narrow impulse, created on the surface at 
penetrates the medium with the speed of light. (Fig. 7.43). Conversely, if ,
then taking the limit and by means of eq. (3.181) one obtains

 , (7.497)

that is, just the result obtained when using eq. (6.111) and eq. (7.492). This
corresponds to a pure diffusion process (Fig. 7.44). 

The general case involves a damped δ-function and a diffusing field, which
the δ-function drags behind itself. There is no field in front of the δ-function.
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Various states of this process are illustrated in Fig. 7.45. For times , the field
looks more and more like the one shown in Fig. 7.44 
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8 Numerical Methods

8.1 Introduction

This text has introduced the terminology of electromagnetic field theory, which
governs the relations between the various field quantities – Maxwell’s equations in
particular – and a few of the methods that are suitable to analytically solve field
theoretical problems. It is obvious, however, that for many problems, analytical
methods may only allow for an approximate solution or may not be solvable this
way at all. If we need to solve such problems, a different methodology has to be
employed. Sometimes, if the problem under consideration differs only slightly
from one that can be solved exactly, then perturbation theory may be applied. We
shall not discuss perturbation in this text. A discussion of that topic can be found at
Morse Feshbach [9]. In contrast, the various types of numerical methods are
generally applicable, at least in principle. In light of the ever increasing potential of
computer power, these methods become more and more attractive and constitute a
fruitful area for field theory as well. The subject is so vast, that we can only touch
on the basic ideas. On the other hand, numerical methods are so important that it
should not go unmentioned and therefore, the following shall be dedicated to
describe the most important numerical methods, including some simple examples.
Although we will focus on electrostatic problems, these methods are applicable to
all areas of field theory, in particular to magnetostatics and to time dependent
problems. It shall particularly be illustrated that, and how the various methods
relate to the analytical methods formally, and in to the field theoretical problems
from a content perspective. It is advisable to always work numerical and analytical
problems in parallel. This is an important basis for successful work in this area of
study. Such approach fosters a deeper and clearer understanding that is sufficiently
critical of the problem and its results. Areas for possible errors can be recognized
more easily and testing of the created programs can focus on the critical aspects of
the problem and thus be more efficient. 

The following sections (8.2 though 8.5) prepare for the later sections (8.6
though 8.10), where the various numerical methods shall be explained.

8.2 Basics of Potential Theory

8.2.1 Boundary Value Problems and Integral Equations

The potential theory only briefly described in Sect. 3.4, is a basic building block for
both, the analytic as well as the numerical methods. This is particularly true for
Kirchhoff’s theorem (see 3.4.7, eq. (3.57)), which because of its far reaching
significance could easily be called the principal theorem of potential theory. 
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 . (8.1)

This equation is valid for the three-dimensional space, where it addresses a point
inside a given region. We have already emphasized that the equation in this form is
not suitable to solve boundary values problems by arbitrarily specifying  and

 on the surface so that  inside could be found. Only one or the other
boundary condition is allowed on any one surface element (in case of a mixed
boundary value problem, it has to be clear for which part of the area  and for
which part  applies. Nevertheless, we may use this equation to solve
boundary value problems (analytically, as well as numerically). Instead of using
eq. (8.1), for points on the surface one has

 . (8.2)

 is a factor that for objects with smooth surfaces everywhere has a constant
value of . These are characterized by tangential planes which are uniquely
defined everywhere. For instance, the surface of a sphere is smooth. However, this
is not true for the surface of a cube (which has edges where it is obviously not
smooth), or that of a cone (which has a tip). Consider the three-dimensional δ-
function as the limit of a series of functions, which, within a given volume V, takes
on the constant value  and vanishes outside of the volume. This makes it
intuitively clear that the integral necessary for the derivation of eq. (8.1), and of
eq. (3.57) in Sect. 3.4.7 becomes

 ,

where  is the solid angle that arises at point  of the surface inside the region.
For smooth surfaces, we have . On the edges of a cube the relation is

 and at its corners . This allows one to include the
singular points of not-smooth surfaces as well.

A similar approach is possible for two-dimensional (plane) problems. In this
case, the so-called fundamental solution of the three-dimensional space 

 , (8.3)

that is, the Coulomb potential of a point charge, has to be replaced by its two-
dimensional analogue, which is the potential of an infinitely long, straight, and
uniform line charge. Disregarding constant factors this is given by 

 , (8.4)

where 
 . (8.5)

With this, instead of eq. (8.1), we obtain for points inside a two-dimensional region
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.
(8.6)

The last two integrals are line integrals along the path element  which
constitutes the boundary of the area. On the boundary itself one has

 . (8.7)

The quantities  and  in equations (8.4) through (8.7) are two-dimensional
vectors in a plane. 

 represents the plane angle seen from inside the area. In case of a
smooth boundary, , for the corners of a rectangle we have , etc.

In case of one-dimensional problems, the fundamental solution can be
expressed in the form

(8.8)

This case yields 

 , (8.9)

and by Sect. 3.4.5 
 . (8.10)

The discontinuity of  at  is typical and of immense significance. This is
similar to the discontinuities of  or  in case
of three- or two dimensions, respectively. The value of the function  at location

 is the average of the left and right sided limit at this point. 
If one wishes to solve a Dirichlet or Neumann boundary value problem, to

start with eq. (8.2) or eq. (8.7) is advisable in order to find the boundary values of
 from those of  or vice versa. This method provides compatible values for
 and  over the entire boundary. With these, eq. (8.1) or eq. (8.6) finally

allow one to determine the potential  in the entire region. The boundary value
problem is thereby reduced to these integral equations.

If, in case of a Dirichlet problem,  is given, then eq. (8.2) or eq. (8.7)
represent the so-called Fredholm Integral equation of the 1st kind for . In
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case of a Neumann problem, eq. (8.2) or eq. (8.7) represent the Fredholm Integral
equation of the 2nd kind for .

There is another way how boundary value problems can be reduced to
integral equations. Consider a surface bounding a region carrying a surface charge
density . Then in the three-dimensional case (the one- and two-dimensional
cases can be solved analogously), the potential inside the volume and on the
boundary is

 . (8.11)

The perpendicular component of the electric field is discontinuous at the surface, as
we have already discovered before (Sect. 2.5.3 and 2.10). On the inside of the
surface, it is therefore 

 . (8.12)

If there is a double layer or dipole layer on the surface with the surface density of
the dipole moment , then the potential is

 . (8.13)

In this case, even  is discontinuous at the surface (see Sect. 2.5.3, eq. (2.73),
eq. (2.82)). The potential on the inside of the double layer is 

 . (8.14)

From a formal perspective, both discontinuities are a consequence of the fact that
 is discontinuous on the surface. Eqs (8.12) and (8.14) are valid

for an approach of the surface from the inside, in order to calculate the surface
integrals. The additional terms of Eqs (8.12) and (8.14) carry a factor 1/2, which is
a result of the fact that the value on the surface is obtained as an average of the both
sided limit, which can be regarded as dividing the discontinuities  and 
in half.

Eqs. (8.11) through (8.14) may be used to calculate the solutions of Dirichlet,
Neumann, or mixed boundary value problems. We start by just considering points
on the boundary. For Dirichlet problems, one finds either  from (8.11) or

 from (8.14). From there, either use (8.11) or (8.13) to find the potential in the
entire region. In case of Neumann problems, one calculates  by means of
(8.12) and then finds the potential in the entire region by (8.11). Again, depending
on the type of problem, one needs to solve either the Fredholm Integral equations
of the 1st or 2nd kind.

These integral equations are of fundamental significance for field theory. For
the Fredholm Integral equations, there exists a well established mathematical
theory, which is also plausible because it is entirely analogous to the theory of
linear algebraic equations. The Fredholm Integral equations are nothing else than
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the continuum analogues of linear algebraic equations. For instance, there are
theorems about the existence or non-existence of solutions, as well as their
uniqueness or multiplicity, which are an almost verbatim copy of their analogue in
linear systems of equations. They form the basis for many fundamental theorems of
potential theory, for example about the existence of solutions of boundary value
problems (see for example [10 through 16]). An analytical solution of the equations
is possible in some cases, which is what shall be demonstrated in the following by
an example. Finally – and this is important for our case – they are also suitable for
numerical evaluation, which results in the boundary element method and is
presented in Sect 8.8.

8.2.2 Examples

8.2.2.1 The One-dimensional Problem

This basic problem illustrates how to use eqs (8.1) through (8.7) in the not so trivial
2-D and 3D cases. We use Green’s integral theorem in one-dimension

(8.15)

and let  be according to eq. (8.10). Then we find for points inside

(8.16)

and on the surface (i.e. for  or ) 

 . (8.17)

The factor  corresponds to the factors  or  in eqs (8.2) and
(8.7), respectively. 
We chose a simple example where

 ,  , (8.18)

and the Dirichlet boundary conditions
 . (8.19)

The exact solution to this problem is 

 . (8.20)

This solution shall be obtained by means of the one-dimensional Kirchhoff
theorem, eqs. (8.16) and (8.17). We start from eq. (8.18) with eq. (8.8)

 . (8.21)

From eq. (8.17), and the fact that the surface consists of only two points, it follows
that 
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or 

 ,

with the solutions

 ,  . (8.22)

Thereby, the boundary values of  determine the boundary values of  (the
perpendicular derivatives). Together with eq. (8.16), they provide the solution 

 ,

which is the same as previously given in eq. (8.20).
As our second example we choose 

 ,  , (8.23)

where 
 ,  . (8.24)

Again, using eq. (8.17) gives
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 . (8.25)

Of course, we obtain the linear potential, necessary for this case. 
It shall be noted that the fundamental solution can be chosen differently.

Important is only that it satisfies eq. (8.10). Therefore, the function

with 

can also be chosen as the fundamental solution. Naturally, both of our examples
will give the same result, which to verify is left for the reader as an exercise.

8.2.2.2 Dirichlet’s Boundary Value Problem of a Sphere

In this example, we will use the above presented integral equations to solve the
inner Dirichlet boundary value problem of a sphere, for which Laplace’s equation
holds (that is no charges) in three different ways. This requires an expansion of the
fundamental solution (i.e. the inverse distance) by means of spherical harmonics.
By eq. (3.324) we write

. (8.26)
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 . (8.27)

Significant is that the expression is discontinuous for . Now, the upper term
is valid for , the middle term is for , and the lower one holds for

. This discontinuity is the main reason for presenting this example here.
From a formal perspective, this is the reason for the discontinuity of the electric
field at charged surfaces and that of the potential at dipole layers which was
demonstrated in Sect. 2.5.3 and has culminated in the integrals eq. (8.12) and
eq. (8.14). This shall be demonstrated again by means of the present example. Note
the frequently used relation:

.

We also need the completeness relation for the spherical harmonics. It results form
expanding  in terms of spherical harmonics by means of
eq. (3.300) and the corresponding expression, now using sine instead of cosine: 

.

We start by analyzing the integral in eq. (8.12). With the exception of the sign, the
perpendicular gradient contained therein is given by eq. (8.27). For  we find
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Next, one calculates the integral at the outside as well as on the inside boundary, or
the difference between the two integrals. One then finds the value of discontinuity
to be

 .

From eq. (8.13), in complete analogy, while recognizing the changed sign, one sees
that the discontinuities of the integral is

 .

Obviously, these discontinuities are local properties of each individual surface
element. For instance, suppose that  is true only for one particular surface
area element. Therefore, the results apply in general to an arbitrary surface. 

Suppose  is given on the entire surface and if the coordinate system is
chosen appropriately, then the boundary values can be expanded in terms of
spherical harmonics:

 . (8.28)

For  we use the Ansatz

 , (8.29)

which allows to determine  by means of eq. (8.11) and eq. (8.26), as well as
the orthogonality relation eq. (3.300). One finds

 . (8.30)

This solves the problem. One can now use eq. (8.11), together with eq. (8.29) and
eq. (8.30) to write the solution for the interior of the sphere

 , (8.31)

which was expected based on eq. (8.28). The purpose of this example was to
demonstrate that the integral relation eq. (8.11) is suitable to calculate the correct
result.
In similar manner, one may use eq. (8.14) and the Ansatz
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to determine . Then

 , (8.33)

which solves the problem as well. Again, one finds the potential (8.31).
Finally, with the Ansatz

 , (8.34)

we may base the analysis on eq. (8.2), where we let . One obtains

(8.35)

and using eq. (8.1) gives again the potential (8.31).
Of course, this approach is applicable to arbitrarily shaped surfaces. If

analytical solutions do not exist, then the problem can be solved numerically. To do
this we partition the surface (the “boundary”) into small surface elements
(“boundary elements”). This leads to the boundary value method, which we will
discuss in Sect. 8.8. 

8.2.3 Mean Value Theorems of Potential Theory

The so-called mean value theorems of potential theory are a consequence of
Kirchhoff’s theorems. They illustrate important relations in a clear and intuitive
manner. Consider a spherically shaped area, centered at the origin with radius R
that does not contain charges ( ). Then by eq. (8.1) 
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Because there are no charges, one has
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This gives
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i.e., the potential at the center of a charge-free sphere is equal to the mean value of
the potential on the surface of the sphere. We might as well consider the entire
volume of the sphere and apply the mean value theorem onto all spherical shells
that are contained within the sphere and obtain
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 . (8.37)

This applies in much the same way to two-dimensional spherical regions. Eq. (8.6)
for the center of a circle reads:

 .

Using

and

gives

 , (8.38)

and for the entire area of the circle 

 . (8.39)

There are analogous statements for the one-dimensional case
,

which has only a linear solution that is
 .

This case yields
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The conclusion is, that the solution of the Laplace equation in one-, two-, and three
dimensions has the property that its values at the center of a line, circle, sphere are
equal to the mean value of the corresponding values on its boundary, which is the
average of the line, the entire circle, or the entire sphere. We will encounter this
fact again when we will discuss the method of finite differences. 
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8.3 Boundary Value Problems as Variational Problems

8.3.1 Variational Integrals and Euler’s Equations

Many problems that are formulated with differential equations can be reduced to
variational problems. This is also true for some problems of the electromagnetic
field theory. We already encountered one such example when studying
electromagnetic waves inside a cylindrical wave guide (Sect. 7.11). The general
task in Variational Calculus is to find the function (or functions) which constitutes
an extremum of its dependent integral, which is called functional, meaning a
function of functions. Consider the following integral that spans a region in space:

(8.42)

Initially, we require that  vanishes on the boundary. Later, we will
consider different boundary conditions.  represent the partial derivatives
of u with respect to . Let u be the function that gives an extremum to the
integral. We define a differing, so-called reference function 

 , (8.43)

where f represents a mostly arbitrary function, which vanishes on the boundary and
its derivative is continuous. The reference function  satisfies the same boundary
conditions as u. If we replace u in I(u) by , then we obtain a function that depends
on ε and whose derivative with respect to ε vanishes for  , i.e., for .
This gives

(8.44)

and
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whereby
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Using the same procedure for  and  one obtains

 .

The second integral vanishes because of Gauss’ integral theorem and because of
the boundary condition for f (i.e.  on the boundary). Since f is an arbitrary
function, the integrand of the first integral has to vanish as its integral must do so
and therefore:
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 . (8.45)

This is the so-called Euler differential equation (also known as Euler-Lagrange
equation). Its solution is the solution of the variational problem given by eq. (8.42)
and vice versa.

As an example, consider the following integral

 .

(8.46)

The corresponding Euler-Lagrange equation is
 , (8.47)

which as a special case contains Laplace’s equation ( ), Poisson’s
equation ( ), and the Helmholtz equation ( ). In case of the
Laplace equation, the integral

possesses the very interesting property to assume an extremum (a minimum,
specifically). This also minimizes the integral 

 . (8.48)

This expresses the remarkable theorem that the electric field in a charge-free region
arranges itself such that the electrostatic energy it contains is minimized
(compatible with the boundary conditions). 

The reader is reminded, that we have started with a Dirichlet problem and
then introduced competing reference functions which had to satisfy the boundary
conditions, who’s task was to facilitate minimization of the functional. Therefore,
not every arbitrary solution of the corresponding Euler-Lagrange equation is a
suitable solution, but only the one which satisfies the Dirichlet boundary
conditions. The next question is how to proceed when the boundary condition is
given in a different form. This question leads to the need to distinguish between
essential boundary conditions and natural boundary conditions . Suppose the
boundary is A, partitioned into the parts  and . Let the essential Dirichlet
boundary condition

(8.49)

apply to part  and the natural boundary condition

 (8.50)

shall apply on the remaining part of the boundary . For , this condition
reduces to the Neumann boundary condition (in case of  or , these
boundary conditions are called homogeneous, otherwise they are inhomogeneous).
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V∫
ε0E2
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A2 d 0=
b 0= e 0=



8.3   Boundary Value Problems as Variational Problems 519

The distinction between essential and natural boundary conditions is based on the
fact that the reference functions used in the variation must satisfy the essential
boundary conditions, but do not need to satisfy the natural boundary conditions. In
order to satisfy the natural boundary conditions, the variational integral has to be
supplemented by a boundary integral, i.e., eq. (8.46) is replaced by

(8.51)

Notice that the boundary integral applies to the surface  only, that is, the part
where the natural boundary conditions (8.50) apply. We will skip the proof of this,
which can be found for example, at Davies [17]. If  and , then the
boundary integral is obsolete, which means that in case of Neumann boundary
conditions, only the volume integral remains. Its variation automatically results in
the solution which satisfies the homogeneous Neumann boundary conditions.
Unlike the Dirichlet boundary conditions, these do not require the choice of
suitable reference functions to ensure a solution. We will demonstrate this
difference by means of simple examples. 

The reader shall be reminded that the Neumann boundary condition may not
be prescribed entirely arbitrarily. For the inner (but not the outer) Neumann
problem it has to be 

 , (8.52)

that is, the electric flux has to be compatible with the total charge inside the region
(this is irrelevant for the outer problem because there, the electric flux is assumed
to extend to infinity and the flux through the imaginary surface at infinity may take
any value). 

One can avoid the need to choose the reference functions in case of the
Dirichlet boundary condition and start with arbitrary functions when
supplementing the variational integral by appropriate supplemental conditions and
consider these by means of Lagrange parameters (Lagrange multipliers). We will
illustrate this with an example.

The variational integrals are very well suited to obtain both an exact, as well
as an approximative solution of the corresponding problem. Oftentimes,
astonishingly accurate results can be obtained even with relatively simple means.
They also provide starting points for the method of Finite Elements (Sect. 8.7). 

A practically important method to obtain approximate solutions of the
variation problems is the so-called Ritz method also known as Rayleigh-Ritz
method. It is based on writing the solution as a series of linear independent
functions  in the following form:

 . (8.53)

 I ∇u( )2 2u r( )g r( )– u2 r( )h r( )–[ ] τd
V∫ d r( )u2 r( ) 2u r( )e r( )–[ ] A .d

A2
∫+=

A2

d 0= e 0=

D dA•∫° ε ∂ϕ
∂n
------dA∫°– Q= =

ϕi

u ciϕi
i 1=

n
∑=
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Substitute this series into the variational integral and let the derivatives of the
resulting function  with respect to  be zero:

 . (8.54)

If the functions  form a complete basis within the region where the functions u
are defined, then this allows to obtain the exact solution. 

8.3.2 Examples

8.3.2.1 Poisson’s Equation

As our first example to demonstrate the variational calculation, consider the one-
dimensional Poisson equation

(8.55)

with its general solution

 . (8.56)

Initially, the boundary conditions shall be left undefined. Later we will solve the
problem under the following boundary conditions
a) First, the problem shall be solved by means of the variational integral for the 

Dirichlet boundary condition
 . (8.57)

The series solution eq. (8.53) shall have the form 
 . (8.58)

It must satisfy the essential boundary conditions. This requires that 
 . (8.59)

Next, the coefficients C and D have to be chosen such that the variational inte-
gral is minimized: 

 . (8.60)

Calculating this integral and letting its derivative with respect to C and D be
zero gives

(8.61)

and 

 . (8.62)

I c1 … cn, ,( ) ci

∂I c1 … cn, ,( )
∂ci

-------------------------------- 0,= i 1 … n, ,=

ϕi

∇2u g x( )– a bx+  ,= = 0 x 1≤ ≤

u A Bx a
2
--x2 b

6
--x3+ + +=

u 0( ) γ  ,= u 1( ) δ=

u x( ) A Bx Cx2 Dx3+ + +=

u x( ) γ δ γ– C– D–( )x Cx2 Dx3+ + +=

I u' x( )[ ]2 2u x( ) a bx+( )⋅+{ } xd
0

1
∫ I C D,( )= =

C a
2
-- ,= D b

6
--=

u x( ) γ δ γ– a
2
--– b

6
--– 

  x a
2
--x2 b

6
--x3+ + +=
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This represents the exact solution because the statement (8.58) is flexible
enough to contain this as a special case.

b) The same problem can be solved in a different manner. The boundary condi-
tions are introduced here as supplementary conditions when varying the inte-
gral and considered by means of the Lagrange multiplier λ and µ. Then with
(8.58), the integral gives

 . (8.63)

The supplemental conditions that correspond to the boundary conditions are
 . (8.64)

This makes the functional which we have to vary
 . (8.65)

The next step is to take the derivative with respect to , and µ:

 . (8.66)

Eliminating λ and µ gives

(8.67)

which, again, is the solution eq. (8.62). 
c) Now, we will cover Neumann’s boundary value problem. Because of 

eq. (8.52), the Neumann boundary conditions have to be chosen such that 

 . (8.68)

This means, we require that

 , (8.69)

Now, by eq. (8.51), we have to add the expression 
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3
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3
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3
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5
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2
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5
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





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
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A γ ,= B δ γ– a
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-- ,= D b

6
--=
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(8.70)

to the variational integral. Then from the functional 

(8.71)

we obtain the equations

 . (8.72)

The first of these four equations is identically satisfied. The reason is that the
Neumann boundary conditions were chosen in the allowed manner. Had we
not considered eq. (8.68), that condition would have to be imposed posteri-
orly. The remaining three equations give

 , (8.73)

while A may be chosen arbitrarily (since in case of a Neumann problem u is
only specified up to a constant). Therefore:

 . (8.74)

This represents the exact solution of the problem. In contrast to the Dirichlet
boundary conditions, the Neumann boundary conditions had to be supple-
mented by the boundary integral (where in this one-dimensional case, this
consists of only two terms). Omitting the boundary integral in an attempt to
satisfy the Neumann boundary conditions by means of a reference function
leads to an incorrect result. The reason is that the wrong quantity is mini-
mized. The reader is encouraged to try this and thereby verify the claim. 

Thus far, in above examples, we have found the exact solution. Now, consider a
simplified Ansatz, which only allows to solve by approximation:

 . (8.75)

d) When considering the Dirichlet boundary value problem with the boundary 
conditions eq. (8.57) we have to require

2 u∂u
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--=
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---------------– 
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 . (8.76)

The variational integral obtained yields

 

and therefore

 . (8.77)

e) Considering the Neumann boundary value problem with the boundary condi-
tions eq. (8.69) gives the first three of the eqs. (8.72) when  and thus

 ,  ,  , (8.78)

and

 . (8.79)

This solution neither satisfies the Poisson equation nor the boundary condi-
tions exactly, but only approximately. 

f) To satisfy the boundary conditions of the Neumann problem exactly, requires 
one to find suitable reference functions. This requires a consideration of the 
additional boundary integral for the variation, because otherwise, the solution 
would be incorrect. For the present case, this leads to the trial function

 . (8.80)

There are no more variational parameters left. The parameter A is arbitrary
and the variation does not depend on it. When comparing the two approxima-
tions (8.79) and (8.80) with the exact solution (8.74), then we observe that the
approximation (8.79) more closely resembles the exact solution and therefore
can be regarded as the better of the two approximations. This can be general-
ized. When starting from the same Ansatz, then the case where the Neumann
boundary conditions are considered exactly, is generally the less accurate
approximation. This is still the case, even if variational parameters remain
after the Neumann boundary conditions were applied. A better approach to
determine the variational parameters is, to leave this to the variation integral,
which defines the approximation and yields an optimized compromise for the
solution. 

8.3.2.2 Helmholtz Equation

As our second example, we shall employ the Helmholtz equation, which describes
for example, the waves in wave guides and was discussed in sects. 7.7 through
7.11. The Helmholtz equation is 

u x( ) γ δ γ– C–( )x Cx2+ +=

C 2a b+
4

---------------=
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4

---------------– 
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---------------------–= C 2a b+
4

---------------=

u x( ) A β 12a 7b+
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----------------------– 
  x 2a b+

4
---------------x2+ +=

u x( ) A β 2a b+
2

---------------– 
  x 2a b+

4
---------------x2+ +=
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(8.81)

and the associated variational integral for homogeneous boundary conditions is
 . (8.82)

This integral is homogeneous in u, i.e. the solution to the variational problem is
specified up to a constant. When dividing eq. (8.82) by  (N is constant), one
obtains

 . (8.83)

Here we have the functional F:

 , (8.84)

which was introduced for two-dimensional problems in Sect. 7.11, eq. (7.452). One
can show that minimizing the integral (8.82) leads to the same result as that of the
functional (8.84).

Next, we will analyze the two-dimensional problem of a wave in a rectilinear
wave guide, where, because of its separability, we limit the discussion to one
spatial coordinate. 
a) We start with the Dirichlet boundary value problem using the Ansatz

(8.85)

which satisfies the homogeneous boundary conditions
 ,  . (8.86)

This represents a TM wave. We could use the same Ansatz for the y-depen-
dency. Both functions  and  exhibit the qualitative characteristics that
can be expected from the eigenfunctions which belong to the two lowest
eigenvalues: no zero or one zero, respectively within the range .
Using the integrals

 , (8.87)

the integral (8.82) becomes

 . (8.88)
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One obtains

 . (8.89)

These simple equations rest on the fact that  and  are orthogonal to each
other, as eqs. (8.87) reveal. This allows the eigenvalue equation to be diago-
nalized immediately and, thus, becomes trivial to solve. One obtains two
eigenvalues. Either

or  . (8.90)

The exact eigenfunctions and eigenvalues are known (see Sect. 7.8.1)
 with (8.91)

and
 with (8.92)

The values calculated by approximation are always too large (N1 by about
1.3% and N2 by about 6.4%). When choosing c1 and c2 such that

 then  is approximated by 

and  by . Better approximations yield more accurate (i.e.
smaller) eigenvalues.

b) Now we attempt to improve the lowest eigenvalue. For this purpose, we 
choose a more flexible Ansatz

(8.93)

and with 

, (8.94)

one obtains

, (8.95)
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 . (8.96)

Non-trivial solutions exist only if the determinant of the coefficients vanishes.
This results in a quadratic equation for the eigenvalues N, with the two solu-
tions:

 .
We are only interested in the smaller eigenvalue

 , (8.97)

which is a rather close approximation to the exact value .
The ratio of the coefficients becomes

 , (8.98)

which is, when normalized for , the eigenfunction to the lowest
eigenvalue 

. (8.99)

c) Next for the TE wave we, choose a different trial function: 

. (8.100)

This gives 

(8.101)
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(8.102)

The eigenvalue equation is of Order 4. However, by inspection, one can see
immediately that  is an eigenvalue. Furthermore, one can find that
another eigenvalue is . This leaves a quadratic equation with the
remaining two eigenvalues

 .
We are interested in the lower one

 . (8.103)

The eigenfunction corresponding to the eigenvalue  is
 , (8.104)

where A is arbitrary. This represents the trivial solution of the Neumann
boundary value problem, an important result for TE01 or TE10 waves. 
The eigenfunction corresponding to the eigenvalue , when
normalized for  is

 . (8.105)

Of course, the eigenfunctions u0 and u1 are orthogonal to each other.
In our example, we have not imposed any boundary conditions. Thus, we

obtain solutions which approximately satisfy the homogeneous Neumann
boundary conditions. ( ). This represents a TE wave.
The exact solution for u1 is . 
Fig. 8.1 compares the functions 

 and  according to eq. (8.85), as well as 

u(x) given in eq. (8.99) with  and . Fig. 8.2 compares the
function  as of eq. (8.105) with . The difference between 
and u(x) as of eq. (8.99) is so small that it is hardly visible in Fig. 8.1. Similarly, the
difference between  and  by eq. (8.105) is also so small that it is just
recognizable in Fig. 8.2. 
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8.4 Method of Weighted Residuals 

The method of weighted residuals is a very general method for exact or
approximate solutions to all kinds of problems. This method is sometimes also
called the momentum method (even though this is also the name for a more
specific method). 

Many problems can be stated in the form
 . (8.106)

L is initially an arbitrary linear operator, for example, a differential operator. If u is
an exact solution to eq. (8.106), then the residual is

 . (8.107)

If u is only an approximate solution, then the residual is
 . (8.108)

One might try to approximate u by a set of linear independent functions 

 . (8.109)

This gives

 . (8.110)
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The approximation is better, the smaller R is. In general, R is a function of space.
The strategy is to analyze appropriately chosen averages of R in order to determine
criteria that allow one to find the best coefficients ci, such that the functions ϕi in
eq. (8.109) – the so-called basis functions – yield the desired approximation. The
method of weighted residuals consists of defining at least n so-called weight
functions wk, whereby the mean values of the so formed integrals must vanish
when integrating over the entire volume:

 . (8.111)

If the number of basis functions is equal to the number of weight functions, then
one obtains n linearly independent equations which determine the n coefficients ci.
If the number of weight functions is larger, then the solution is overdetermined, and
it may be inconsistent and is initially not solvable (if, indeed, the equations are
linearly independent). In this case, as in curve fitting, the method of least squares is
employed to find the best fitting coefficients.

Various variants of this method exist. The basis and weight functions may be
identical, which leads to the Galerkin method. If the weight functions are the
eigenfunctions of the given operator and they form a complete set of basis
functions, then one obtains the usual representation of the solution by expanding
them with respect to these functions (as was presented in detail in Chapter 3). With
the exception of the Monte-Carlo method, all the numerical methods which we will
discuss subsequently can be regarded as special cases of the method of weighted
residuals. 

A few specific methods shall now be described briefly.

8.4.1 Collocation Method

The δ-functions can also serve as weight functions. This has the advantage that it
makes the integration trivial, which otherwise can be difficult at times. One obtains
a system of equations, which lets the residual exactly vanish at the so-called
collocation points, however, not at all other points. Usually, the number of δ-
functions and thereby the number of collocation points is the same as the number
of basis functions. If this number is larger, it is called an overdetermined
collocation. An approximation method frequently used in field theory, the so-called
image method or method of virtual charges, is (including various generalizations
and modifications) a typical collocation method.

The procedure shall be demonstrated by means of a simple example.
Consider the one-dimensional Poisson equation

(8.112)

with Dirichlet boundary conditions
 . (8.113)

Its exact solution is easy to find

Rwk τd
V∫ ci wkLϕi τd

V∫i 1=

n
∑ wk f τd

V∫– 0= =

∇2u x( ) x2= 0 x 1≤ ≤

u 0( ) u 1( ) 0= =
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 . (8.114)

Now one uses an approximation consisting of two basis functions
 . (8.115)

Both satisfy the boundary conditions. The residual is
 . (8.116)

The parameters c1 and c2 are determined by collocation at the two points
 and :

that is

therefore

and

 . (8.117)

If one chooses the three collocation points , then
one gets three equations for c1 and c2:

(8.118)

We minimize the sum over the error squares (least error squares),

 .

Differentiating this with respect to c1 and c2 gives two equations
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(8.119)

Eqs. (8.119) can be obtained directly from (8.118) when employing matrix notation

 , (8.120)

and multiply this by the transposed coefficient matrix , i.e.,

 . (8.121)

Equation

is another representation of (8.119), which leads to

 ,

and

 . (8.122)

The matrix , encountered here is frequently used in curve fitting and is
sometimes called the half-inverse. More on this can be found in [18].

8.4.2 Method of Fractional Regions

With this method, the region is separated in several subregions Vi, with the mandate
that the integrals over all subregions vanish

 . (8.123)

The weight functions are constant, but each one is non-zero in only one of the
regions. In our example, one chooses two regions,  and 
which gives
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that is
 ,

and

 . (8.124)

8.4.3 Momentum Method

In case of the momentum method (in the strict sense of the term), the factors
 serve as weight functions, i.e., one defines

 . (8.125)

For our current example, with  one obtains:

 ,

 ,

which results again in 

 ,  ,

and  according to eq. (8.124).

8.4.4 Method of Least Squares

Another possibility is to apply the method of the least squares directly onto R. This
differs from the overdetermined collocation method. Then, the integral

(8.126)

needs to be minimized. For our example, this gives

and
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where

 ,

which again, now for the third time, yields the approximation solution eq. (8.124).

8.4.5 Galerkin Method

Of particular importance is the Galerkin method. Here, the basis and weight
functions are identical. The Galerkin method is equivalent to the Rayleigh-Ritz
method for the case of problems that can also be treated as variational problems;
i.e., see 8.3.1. It leads to the very important method of Finite Elements when
choosing special basis functions (see Sect. 8.7) .

For illustration purposes, we will focus on an already used example. Let

 ,

 ,

to obtain 

,

that is 

 . (8.127)

If one tackles the problem with the Rayleigh-Ritz method, then the integral to be
minimized is

and one obtains the same system of equations as above:

 ,

 .

It should be easy to convince yourself that this is no coincidence, but that the
results always coincide.

As a further example, we will solve the above problem with the generalized
boundary conditions:
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,

and we will also use a different set of basis functions, namely

(8.128)

and 

(8.129)

This Ansatz represents a piecewise linear approximation of the function values
 between the locations . The values of the

functions occur as coefficients of the particular basis functions. The basis functions
are each different from zero only in one of the subregions. This is a simple example
of the method of finite elements, which we will discuss later in detail. Here, we
chose special and very simple (namely linear) form functions.

It is now possible to use the Galerkin method or the Rayleigh-Ritz method to
calculate u1 and u2 (u0 and u3 are given by the boundary conditions), which has to
lead to the same result as before. In case of the Galerkin method, the residue
contains the second derivative of u, . According to eq. (8.129), the first
derivatives u’ are discontinuous at the sampling points. This means that the second
derivatives are δ-functions. The necessary integrals can be calculated by means of
these δ-functions. These integrals can be avoided when integrating by parts

 . (8.130)

This situation is referred to as the “weak” formulation of the problem. We will use
the variational method, which only needs u’(x) from start, that is, it represents the
weak formulation from the beginning. The calculation is tedious but without any
problems and yields

(8.131)

and
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(8.132)

i.e.

(8.133)

The exact solution of the problem is

 . (8.134)

This means that at the two sampling points, we obtain the exact value for u1 and u2.
We get the intermediate values by linear interpolation. For the special case

we find

 . (8.135)

Written in a slightly different form, the two eqs. (8.132) read

 . (8.136)

This exhibits great similarity with the result obtained by means of the finite
differences (as we shall see later). For , one obtains from eq. (8.162) of
the upcoming Section 8.6.1 the following result:

 . (8.137)

The difference between them manifests itself in the right sides of the equations,
which stems from the inhomogeneity . Eqs (8.137) give
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 (8.138)

and for 

 . (8.139)

Now, we have approximated solutions of eq. (8.112) with the boundary condition
(8.113) by many different ways. Fig. 8.3  compares the exact solution (8.114) with
the various approximations, namely:

• Eq. (8.117) Collocation
• Eq. (8.122) Overdetermined Collocation
• Eq. (8.124) Method of Fractional Regions, Momentum Method, 

Method of Least Error Squares
• Eq. (8.127) Galerkin Method, Rayleigh-Ritz Method
• Eq. (8.135) Rayleigh-Ritz Method with different trial functions
• Eq. (8.139) Method of finite differences.
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Fig. 8.3 clearly illustrates that the various solutions are of different quality. On the
other hand, it also becomes clear that by means of only a few simple trial functions,
one can obtain very useful approximations. Nevertheless, one should not jump to
conclusions with respect to the quality of the various methods based on
generalizations of the results depicted in Fig. 8.3.

The method of the weighted residuals may be used in various variants. With
the exception of the Monte-Carlo method, it can be regarded as the starting point of
all the numerical methods which we will discuss in the following, namely the
method of finite differences, the method of finite elements, boundary element
method, and the method of image charges. Only the Monte-Carlo method is based
on an entirely different approach. Nevertheless, for the field theoretical problems
which we consider here, this method is ultimately equivalent to the method of finite
differences.

8.5 Random-Walk Processes

In anticipation of the Monte-Carlo method, we consider simple random-walk
processes. These are special, stochastic processes, which represent a very useful
and intuitive model for many theoretical, and in practice interesting problems
within the Theory of Probability and in Physics.
We start from a one-dimensional discrete random-walk process. For this purpose,
consider an infinitely long straight line with equidistant grid points, which we
identify by whole numbers from  through  (Fig. 8.4). At time , a
particle (or a person) shall be located at point 0. Within defined time intervals, the
particle moves in steps towards the right or left, each direction with the probability

or q, respectively. Of course, 
 . (8.140)

We want to know what is the probability to find the particle at any particular
location after n steps. The probability to be at location  after n steps is, we
claim 

∞–  ∞+

Fig. 8.4
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 . (8.141)

In order to arrive at point  requires to move m of the total n steps to the right
and  steps to the left. The order of the steps is immaterial. The m and the

 steps, respectively, may be selected from the n steps in different ways.
Remarkable is that because of eq. (8.140): 

 . (8.142)

Therefore, the function  is called the generating function of the
probabilities w. Eq. (8.142) can be explained plausibly by the fact that when
expanding , the occurrence of the product  is the same as picking
m or n - m elements of the total number of n elements, when disregarding the order.
This explains the relation to the probabilities. At the same time, eq. (8.142) reveals
that the sum of the probabilities equals 1, as it must be.

To know the generating function is very helpful. Consider, for example, the
average of the passed locations after n steps and the average of its square:

 . (8.143)

From eq. (8.142) follows that

and

Therefore

(8.144)

 . (8.145)

Adding the two equations gives

 . (8.146)
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Using eqs. (8.144) and (8.146) one finds
(8.147)

 . (8.148)

For the symmetric random-walk process one has  and
(8.149)

 . (8.150)

Symmetry explains the vanishing of . Eq. (8.150) is very interesting. If the
steps occur at equidistant points in time, then . The square root of the
squared average of the surpassed distance is thus proportional to , and not to t.
This is a typical property of diffusion processes, which can be regarded as
generalized random-walk processes. We already discovered this fact, while
covering the diffusion equation in Sect. 6.2.3, eq. (6.39) in particular. Of course, for
the limit  (or ), because in this case all the steps proceed in only one
direction – either left or right – we obtain:

 . (8.151)

This represents a directed motion and not a random-walk. 
From a purely formal perspective, the random-walk problem may be treated

as the solution to a difference equation for probabilities. Let  be the probability
that after k steps, a particle is found at location i. Then

 . (8.152)

The methods to solve such difference equations are entirely analogous to the
solution of differential equations. Both require initial and boundary conditions in
order to make the solutions unique. The probabilities given above (8.141) satisfy
the difference equations. They represent their only solution for the infinite one-
dimensional space when the probabilities vanish at infinity and the initial condition
is

 . (8.153)

Conversely, one might want to analyze finite regions which limit the possible
motion of the particle and note for example, that a particle arriving at  or

 is absorbed or reflected, respectively (or absorbed or reflected with a certain
probability). Based on difference equations, boundary conditions, and initial
conditions one can calculate the various probabilities on a one-, two-, or three-
dimensional lattice. This constitutes a wide field with many interesting results,
which we shall not discuss here. However, when solving field theoretical problems
by means of the Monte-Carlo method, then one-, two-, or three-dimensional
discrete and symmetric random-walk processes with absorbing walls will be
applied.

Here, we consider a few simple probabilities that will be required later.
Fig. 8.5 shows a finite, one-dimensional lattice with absorbing walls at 0 and 4, and
with three internal points. Let a particle carry out a random-walk process starting at
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one of the inner points. We ask, what is the probability Wik for a particle starting at
point i to be absorbed at point k, if k is a boundary point or, how often it passes the
point k, if it is an inner point. The reader may convince himself that the
probabilities are as follows:

 . (8.154)

When we include the “passing” of the initial point, this would make ,
, . 

In case of the two (three) dimensional symmetric random-walk, the particles
move with the equal probability of 1/4 (1/6), respectively, towards one of the four
(six) neighboring points. Fig. 8.6  shows a simple two-dimensional lattice with
absorbing walls. What is the probability Wik for a particle starting at point i, to be
absorbed at point k? Note that this question, unlike above, does not ask for the
frequency of passing inner points. Initially, to simplify, we note that there are only
three significant boundary points. Because of symmetry, the probabilities of being
absorbed at 4, 4’, or 4’’ are the same. The same is true for 5 and 5’’, as well as for 6,
6’, and 6’’. Furthermore, and this is left for the reader to verify, we have
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 . (8.155)

Of course it must be

and so on.

8.6 Method of Finite Differences

8.6.1 Fundamental Relations

The method of finite differences is one of the oldest numerical methods. The
procedure shall be illustrated by using the Poisson equation as an example. To
simplify, we start from a rectangular region and use Cartesian coordinates x, y (i.e.,
we consider a two-dimensional problem). As shown in Fig. 8.7 , the area is
“discretized”, i.e. only the potentials  that occur at the corners of small squares
at the gridpoints ,  will be considered. The side of these squares have the
length h. Expanding into a Taylor series gives
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.

Adding these four equations while disregarding the terms of higher order gives
(8.156)

and with the Poisson equation
(8.157)

 . (8.158)

For , this results in the so-called five-point formula

 . (8.159)

It interlinks the potentials at the five points shown in Fig. 8.7. It expresses the
potential at each gridpoint (not at the boundary points) in terms of the mean value
of the potentials at its four neighbor points. Because of the corresponding mean
value theorem (8.38), this is not surprising. If one regards the gridpoint with the
potential ϕi,j as the center of a circle with radius h, then the current approximation
of the potentials on the circumference are represented by the potentials at the four
mentioned points, whose averaging gives the potential at the center. The five-point
formula is nothing less than the corresponding two-dimensional mean value
theorem in a discretized form.

This can easily be generalized to three-dimensional problems by analogously
defined gridpoints xi, yi, zi. Each gridpoint now has six neighboring points.
Expanding this in a Taylor series gives now six, instead of the previous four
addends. Their summation gives

(8.160)

For , i.e., for the Laplace equation, this leads to the seven point formula
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(8.161)

This represents the three-dimensional mean value theorem, eq (8.36), in discrete
form. 

For the one-dimensional case we have of course

(8.162)

and for 

 . (8.163)

For comparison purposes, we have already used eq (8.162) in a previous section –
eq. (8.137), , . 

Writing the corresponding equation, i.e., one of eqs. (8.158) through (8.163),
depending on the kind of problem, for every internal gridpoint of a one- or two-
dimensional lattice, then one obtains a linear system of algebraic equations. For the
Laplace equation, it is homogeneous. When prescribing the potential at the
boundary, this results in a solvable inhomogeneous system of equations with a
unique solution. The number of equations is equal to the number of grid points
inside and thereby equal to the number of unknowns (that is, the potentials at the
inner gridpoints). One can prove that the coefficient matrix exhibits the necessary
properties (that is, its determinant does not vanish). This reveals that the
uniqueness theorem, proven in the potential theory for the solution of the Dirichlet
boundary value problem (Sect. 3.4.3), because of the discretization, is related to the
theorems of linear algebra.

The solution to Neumann or mixed boundary value problems is similar, but
more tedious, and will not be discussed here.

The given relations need to be adopted in case of arbitrarily shaped
boundaries, which requires to adjust the varying distances of the gridpoints from
the boundary (“boundary region formulas”), which adds to complicating matters.
This too, will be skipped here.

In any case, for all such problems, one obtains uniquely solvable systems of
linear equations. To solve a pure Neumann boundary value problem requires one to
fix a constant, for example, by prescribing the potential at a gridpoint. The results
become increasingly accurate (within certain limits) as the granularity decreases,
i.e., the smaller the lattice constant h is chosen. Of course, this increases the
computing effort as the number of unknowns increases. An advantage is thereby
that the obtained coefficient matrix is only lightly populated, that is, it consists of
mostly vanishing elements. The voluminous systems of equations can either be
solved directly (for example, by Gauss elimination, by left-right decomposition,
etc.) or by means of iteration methods (for example, Jacobi method, Gauss-Seidel
method, or the relaxation method, etc.)
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The discretization described above is not the only one possible. It is also
possible to obtain more accurate relations when one includes more points during
the discretization. For example, consider the Laplace operator. We start with a one-
dimensional function , where for example,

or as well

 .

Adding gives

 .

Analogously we find 

 .

Mixing the last two relations by using the weights a and b gives

. (8.164)

Choosing  and  gives

 . (8.165)

Proceeding in an analogous way for the second derivatives gives

 , (8.166)

and with  and  

 . (8.167)

For the one-dimensional case, eq. (8.167) is already a five-point formula, i.e., in
order to express ϕ’’, it uses the values of ϕ at five points. Analogously, for the two-
and three-dimensional case, this results in 9 or 13 point formulas. The best value
for a and b in each case is determined by the remainder term of the Taylor
expansion, which should be of the highest possible order (i.e. as small as possible).
More details are provided for example, by Marsal [19]. Another interesting
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representation of the two-dimensional Laplace operator is the following.
According to eq. (8.156) for the nine gridpoints presented in Fig. 8.8 , we have

and also

 .

Therefore

and with , 

 .

(8.168)

In particular for  

 . (8.169)

Further details and similar relations can also be found in Marsal [19].
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8.6.2 An Example

As an example, we shall apply the method to the Dirichlet boundary value problem
depicted in Fig. 8.9. There are nine gridpoints inside the square area. The Laplace
equation shall be solved for the boundary conditions of  at the top
boundary and  at the remaining boundaries (all are dimensionless
quantities)
Its solution is

 , (8.170)

where d represents the sides of the square. Evaluating this result at the gridpoints
yields the following potentials:

(8.171)

The following approximations can be compared with these results. 
The five-point formula (8.159) yields the following six equations:

 . (8.172)

Solving it directly yields

(8.173)
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Of course, these values deviate from the exact ones, but the maximum error is just
under 5%. 

One can also apply the nine-point formula (8.169). This requires to use the
potentials at the corners of the square. At the discontinuities (i.e. at , 
and at , ), one has to use the average, i.e. . This gives the
following equations:

(8.174)

and its solutions

 (8.175)

This coincides astonishingly well with the exact solutions eq. (8.170) and (8.171),
respectively. The maximal error is at about 0.1%, and thereby about 50 times

Fig. 8.9

ϕ1

ϕ 0=

d

dϕ 0=

ϕ 0=

ϕ 100=

ϕ1 ϕ2

ϕ3ϕ3 ϕ4

ϕ5ϕ5 ϕ6

x 0= y d=
x d= y d= ϕ 50=

ϕ1
1
5
--ϕ2– 1

5
--ϕ3– 1

20
-----ϕ4–      55

2
-----=

2
5
--ϕ1–  ϕ2+ 1

10
-----ϕ3– 1

5
--ϕ4–      30=

1
5
--ϕ1– 1

20
-----ϕ2–  ϕ3+ 1

5
--ϕ4– 1

5
--ϕ5– 1

20
-----ϕ6–  0=

1
10
-----ϕ1– 1

5
--ϕ2– 2

5
--ϕ3–  ϕ4+ 1

10
-----ϕ5– 1

5
--ϕ6–  0=

    1
5
--ϕ3– 1

20
-----ϕ4–  ϕ5+ 1

5
--ϕ6–  0=

    1
10
-----ϕ3– 1

5
--ϕ4– 2

5
--ϕ5–  ϕ6+  0=





















ϕ1
25.159

92
---------------- 43.2065= =    , ϕ2

25.1095
506

------------------- 54.1007  ,= =

ϕ3
200
11
--------- 18.1818  ,= = ϕ4 25  ,=

ϕ5
625
92
--------- 6.7934  ,= = ϕ6

25.193
506

---------------- 9.5355 .= =












548 Numerical Methods

smaller than when using the five-point formula. The exact value for the potential
 is obtained in both cases.

The so-called Gaussian elimination is oftentimes used for the direct solution
of the systems of equations, whereby the coefficient matrix is transformed into a
triangular matrix by applying elementary row operations. This results in an easily
solvable system of equations. Another method is the so-called LR decomposition
(“left-right decomposition”). In this case, the matrix is transformed into a product
of two triangular matrices, which also allows to conveniently solve the system of
equations. 

Oftentimes the system is solved iteratively. For this purpose, one uses
estimations for the potentials at the gridpoints. Then, by means of the respective
formulas, one calculates new values etc., i.e. from the potentials of the n-th
iteration steps ( ) one calculates the values of the (n+1)-th step ( ) as
follows:

 . (8.176)

This is the so-called Jacobi method. Convergence of the iteration is accelerated in
case of the Gauss-Seidel method. Here, in step (n+1), not only the old values n are
used, but already the new values of the step (n+1) are used as much as they are
available. Further acceleration of the convergence can be achieved through the
relaxation method, which shall only be mentioned here, but not further discussed.

Of course, the iteration converges better, if the initial estimates are more
accurate. At least for the current example, it is easy to find very useful estimates by
using the five-point formula or – what amounts to the same – using the mean value
theorem. Consider initially only an inner gridpoint in the center, then based on the
boundary values one estimates a value of . Now one narrows the grid
according to Fig. 8.9. From  and the boundary values, the corners in particular,
one obtains an estimate for  and , namely  and

. This allows one to estimate the remaining potentials,
, , . Now, based on these values one iterates by use

of eq. (8.176). It remains left for the reader to convince himself, that this converges
towards the approximations given in (8.173), but not towards the exact value. The
Gauss-Seidel method accelerates the convergence. In contrast to the Jacobi
method, the symmetry of the values for the potential of the present problem is
initially lost, even though this will, of course, finally converge towards the
symmetric approximation solution. 

These proceedings may be modified in many ways. The grid spacing for the
various coordinate directions may be chosen with different values. The lattice does
not need to be uniform, i.e. the grid may be variable inside a region. This leads to
the method of local grid refinement, if inside a particular region an extremely fine
discretization is needed in order to achieve a required accuracy. 

Of course, the method of finite differences is applicable to all sorts of
differential equations. Space or time dependent problems (for example diffusion
equations or wave equations), generally require one to also discretize the time.
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Depending on the strategy, there are two different types of difference equations. In
the first case, the so-called explicit methods, all quantities of a given “time plane”
are calculated from the immediately preceding time plane. In the second case, the
implicit methods, the equations of one time plane contain the unknowns of the
subsequent time plane. This distinction is of importance because the per se simpler
explicit methods exhibit the disadvantage that they may be unstable, i.e. that errors
may grow and the numerical results become useless. This only seemingly
insignificant difference shall be illustrated by means of the example of the
diffusion equation. We may discretize the equation 

(8.177)

in the form

(8.178)

but also in the form

 . (8.179)

In case of the explicit formulation (8.178), all  can be directly calculated from
the values , generally all  from  etc. In contrast, the implicit
formulation (8.179) requires more computing effort. The so-called semi-implicit
methods constitute a compromise between the two methodologies whereby the two
relations (8.178) and (8.179) are mixed by the weight factors α and 1 - α (“Euler
factor”). 

As an example, Fig. 8.10 shows the current density field inside a meandering
thin-film resistor, which was calculated by means of the finite difference method.
This is a two-dimensional, mixed boundary value problem (  and 
at the two contacts on top and bottom,  at the other boundaries). For
this example, the domain decomposition method was additionally used. This
allows one to reduce such a problem to finding the solutions in subregions, where
the boundary conditions at the additional boundaries need to be initially estimated.
The problem is then solved iteratively. More details on this method can be found in
Bader [20]. In the present case, the area was partitioned entirely in rectangles. 

8.7 Finite Elements Method 

The method of Finite Elements has quickly gained significance. Although the
effort in any particular application may be substantial, the method is in principle
based on a simple and elegant idea. It is very flexible and thereby applicable to
many types of problems. Oftentimes, it is superior to other methods, although this
may not be the case for every type of problem. Corresponding to its significance,

∂2u
∂x2
-------- A∂u

∂t
------=

ui 1– k, 2ui k,– u1 i+ k,+

h2
--------------------------------------------------------- A

ui k 1+, ui k,–
∆t

-------------------------------=

ui 1– k 1+, 2ui k 1+,– u1 i+ k 1+,+

h2
-------------------------------------------------------------------------------- A

ui k 1+, ui k,–
∆t

-------------------------------=

ui k,
ui 0, ui k 1+, ui k,

ϕ ϕ1= ϕ ϕ2=
∂ϕ ∂n⁄ 0=



550 Numerical Methods

the available literature covering finite elements is rather extensive. As examples,
the books [17, 19, 21 through 27] shall be mentioned.

For this method, the region of definition of the unknown function or functions
is partitioned into more or less arbitrarily shaped domains – just the finite elements,
partial lines, partial surfaces, partial volumes, depending on the dimension of the
region that needs discretization. Every finite element is associated with an
approximate solution which is non vanishing only inside of that element. The
approximate solution consists of a set of linearly independent basis functions (the
so-called form functions) and a corresponding number of initially undetermined
parameters. These parameters represent the value of the function itself, which it
assumes at certain points of the finite element, the so-called nodal points. These
nodal points, thereby, play a similar role as the gridpoints did in case of the finite
difference method. The not so insignificant difference is based on the fact that the
approximate solution assumed in the finite element method, approximates the
unknown function at all points, not only at the nodal points. On the other hand, the
method of finite difference may be regarded as a special case of the method of
finite elements. Furthermore, even in case of the finite difference method, it is
possible by proper interpolation, to assign values to all points The entire region has

Fig. 8.10
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to be filled with finite elements in such a way that every node at the boundary of a
finite element coincides with the node of its neighbor elements, whereby the value
of the functions have to match there as well. Together with the boundary
conditions, one obtains a system of equations that allows to determine the value of
the function at the nodal points. Thereby, one starts either with the method of the
weighted residuals, usually in the form of the Galerkin method or – given the
variational integral exists – one starts from the Rayleigh-Ritz method, which is
equivalent to the Galerkin method.

Before providing more in depths details, we will illustrate what we have
learned so far by a two-dimensional example. A particularly simple one-
dimensional example that highlighted some of the important steps was already
provided in Sect. 8.4.5, equations (8.128) and following. In the two-dimensional
case, triangles can be used as finite elements, which need to fill the entire area. 
Fig. 8.11 shows one of these triangles with the corners  and the
corresponding values . The corners constitute the nodal points. Inside
the triangle, we attempt to approximate the unknown function by a function of the
form

 . (8.180)

Then, for every corner or nodal point, it has to be
 .

a, b, c can be calculated from these three equations:

, ,  , (8.181)

where D is the coefficient determinant.
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 . (8.182)

If one lets

 ,

 , (8.183)

 ,

then for these so-called form functions we have
(8.184)

and the Ansatz (8.180) takes the form

 . (8.185)

Together with eq. (8.184) we obtain, as necessary:

 . (8.186)

This means that eq. (8.185) represents the Ansatz within the observed finite
element, in form of a linear combination of the form function and the coefficients
represent the values of the function at the nodal points. These functions are non-
vanishing only inside this particular finite element. The Ansatz for the problem
overall, is finally obtained by superposition of all trial functions of all elements.
The form function can also be interpreted as being so-called triangular coordinates.
Every point in a triangle can be determined by the triangle coordinates .
As indicated in Fig. 8.12 , these are defined in such a way that the side opposite of

 is associated with  and the line parallel to it that cuts through  is the
line . On the parallel lines inbetween,  takes on distance proportional
values. Of course, two of these three triangular coordinates are sufficient to
uniquely characterize a point. The relation between the triangular coordinates and
Cartesian coordinates is given by the coordinates of the corner points. We have

 . (8.187)

From this, one obtains for example, for the point  with , ,
 just , , etc. Since the relation has to also be linear, it is
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thereby proven. If one now calculates the triangular coordinates 
corresponding to a point x, y, then one precisely obtains the form functions

 . (8.188)

The form functions thereby also represent a local coordinate system on the
corresponding triangle. This knowledge is useful when calculating many of the
integrals that are necessary when applying, for example, the Galerkin or the
Rayleigh-Ritz method.

The described triangles, together with the linear form functions (8.183) and
the related Ansatz (8.185) provide only a simple example. Practical applications
use two- and three-dimensional finite elements of different types, with a varying
number of nodal points and oftentimes much more complicated form functions of
higher order. The details may become very voluminous and may be expressed in a
complicated form, which of course, does not change the basically simple and
elegant principle.

To simplify, the procedure shall be illustrated by means of the one-
dimensional example which we have already mentioned in Sect. 8.4.5. Consider
the region  and partition it as shown in Fig. 8.13 in n finite elements of
length

 , (8.189)

with the nodal points , where
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 . (8.190)

One proceeds in a strictly formal fashion, in order to highlight the analogy to the
case of triangular finite elements. For the i-th finite element, let 

 , (8.191)

where

 . (8.192)

Therefore

, 

(8.193)

and

with

 ,  , (8.194)

where obviously

 . (8.195)

These relations are analogous to eqs.(8.180) through (8.188), which we have
discussed for the triangles. The form functions (8.194) represents local coordinates
in the i-th element, just as the triangle coordinates do for the triangular finite
element. Next, one finds an approximation for the Poisson equation

(8.196)

with the boundary conditions
,  . (8.197)

This requires to minimize the integral
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(8.199)

where

 . (8.200)

Minimization of this, results in the following parts:

 . (8.201)

The corresponding coefficient matrix is called element matrix. Collecting all
contributions of all finite elements gives the overall matrix of the linear system of
equations which, ultimately will need to be solved. 

Now, we choose ,  and . The exact solution in this
case is

 . (8.202)

For the present case, one has

 , (8.203)

and

 ,  . (8.204)

Ultimately, one obtains the following equations for :

 . (8.205)

Eq. (8.204) yields

(8.206)

and the equation system (8.205) takes on the form 

 . (8.207)

Its solution is
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 . (8.208)

At the nodal points, this coincides with the exact solution. The form function is
used to interpolate in between the nodes. Comparison with eq. (8.162) shows that
for the present case, the finite difference method would have yielded the same
difference equations (8.207).

Despite its simple nature, this example exhibits the steps for applying finite
elements.
a) Partitioning the region into finite elements.
b) For every finite element, approximate the function as a linear combination of 

the form functions, where the values of the functions at the nodal points are 
expressed as coefficients.

c) Determine the element matrix by evaluating the occurring integrals (which 
may require numerical methods).

d) The overall matrix is compiled from the element matrices. This step is poten-
tially complicated. Sound indexing is paramount, in particular, in case of 
multi-dimensional problems and finite elements with many nodes.

e) Finally, the system of equations needs to be solved. The same methods can be 
used as already partly addressed in Sect. 8.6, presenting finite differences.

Despite its flexibility, finite elements (and also finite differences) are not suitable
for problems involving infinite regions that include the external Dirichlet or
Neumann boundary value problems. Oftentimes one uses finite regions, which has
the disadvantage of introducing errors that are difficult to estimate because the
boundary conditions on those artificially introduced boundaries are unknown and
can only be estimated. An option is to tackle the problem by introducing so-called
infinite elements. Two different approaches were taken so far in this respect. On
one hand, one uses exponentially decaying form functions whereby a suitable
exponent has to be chosen. On the other hand, one transforms the infinite elements
by a suitable transformation onto finite elements. So far, it remains an open
question whether the use of infinite elements leads to satisfactory results. In any
case, problems involving infinite regions can be solved by means of the boundary
element method, which we will discuss in the next section. For this method, the
distinction between finite or infinite regions is insignificant. For many problems, to
couple both methods is beneficial, where the finite elements are used inside a
region and compatible boundary elements are then used on the outside boundary of
this arbitrary region.

Fig. 8.14 presents the results of a diffusion problem that was solved with
finite elements. It represents a rotationally symmetric magnetic field .
Shown is the initial field and the fields for the dimensionless times ; 

; ; . Comparison with the known analytic solution of the problem
shows that the relative error of the presented numerical solution is . 
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8.8 Method of Boundary Elements

The Method of Boundary Elements is the most recent of the important numerical
methods; a method, particularly interesting for electromagnetic field theory and
virtually taylor made for many field theoretical problems. The reason is, that it
emerges directly from the integral equations of field theory when discretizing
them. It is valuable in both cases, as an independent method, as well as a
supplement to the finite element method. An in-depth descriptions can be found in
Brebbia or Brebbia, Telles, and Wrobel [28, 29].

Starting with the integral equations presented in Sect. 8.2 (or their
corresponding integral equations for magnetostatic or time dependent problems),
we will initially study only the surfaces (boundaries) of the observed regions.
Solving these integral equations, initially only for the boundaries, yields the
quantities by which the field of the finite or infinite region (this does not make any
difference here) can be calculated, as described in Sect. 8.2. Sometimes a
distinction between direct or indirect methods is made. The direct methods are
based on eqs. (8.1) and (8.2), (8.6), and (8.7) or (in the trivial one-dimensional
case) (8.16) and (8.17), while the indirect methods are based on equations of the
type (8.11) through (8.14).

Fig. 8.14
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Discretization is achieved by partitioning the boundaries in surface elements
or (in the two dimensional case) into line elements, which may be chosen in many
different ways. The unknowns (that is ϕ or  in case of the direct methods,
and surface charge σ or area density τ of the dipole moments in case of the indirect
methods) are expressed on the boundary elements by trial functions with different
form functions. In the simplest case, they are assumed constant on the boundary
element. In the two-dimensional case, for instance, one may proceed as illustrated
in Fig. 8.15 The boundary elements are here line elements on the boundary curve.
The values at the center of each element are assumed to be constant, i.e. there is
only one node per element (the so-called “constant element”). 
With , and for example for the Laplace equation (i.e. when ), from
eq. (8.7), the potential on the boundary elements i ( ) yields

 . (8.209)

The result of evaluating these integrals (which each has to be calculated on the
boundary elements referenced by ) is a linear system of equations of the form:

 , (8.210)

or in matrix form

 , (8.211)

where  and  represent the column vectors of the n values  and
, respectively and 

,  . (8.212)

The term  on the left side of eq. (8.209) is included in . The system of
equations (8.211) is initially homogeneous with respect to the 2n quantities ϕk and

. In any case, half of these quantities are given (for example, in case of
the mixed boundary value problem n1 of the values ϕk and n2 of the values

, where ). The remaining n quantities are unknown and
need to be determined by solving this system of equations. Once the unknowns are
determined, the potential may be calculated by means of eq. (8.6) at specific
gridpoints within the entire region. 
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Similarly, one might start from eqs. (8.11) and (8.12) and write them in the
following form:

 , (8.213)

where  represents the column vector of the n values σk and 
,  . (8.214)

Again, n of the 2n quantities ϕi and  are given. From the 2n equations,
one selects the corresponding n equations and solves for the values σk. This allows
to calculated ϕ at any point of the entire region.

The boundary element method is similar to the finite element method in the
sense that at the boundary elements, trial functions similar to those used for finite
elements are chosen by suitable form functions. The difference is that the weight
functions are different. Indeed, the Boundary Element Method can be regarded as a
special case of the method of weighted residuals, where the fundamental solution
of the potential theory plays the role of the weight functions. More on this can be
found in Brebbia, Telles, and Wrobel [29]. Thus, the various methods are
somewhat interrelated. One distinguishes hereby the different formulations of the
problem to be solved. For instance, in case of the Laplace equation, the residual 

of the unknown function ϕ and the weight function ψ occurs. Integrating by parts
once, by means of Green’s integral theorem, one obtains – except for boundary
integrals – the so-called weak formulation of the problem with the integral 

 .

and a second integration by parts gives the so-called inverse formulation with the
integral 

 .

One should not read too much into this terminology. Nevertheless, it is remarkable
and sometimes useful to realize that at each of these steps, the trial function ϕ has
one derivative less and the weight functions requires one derivative more. Besides,
as examples in applying these formulations, one can recognize the method of the
variational integrals in the weak formulation, and in the inverse formulation, that of
the Boundary Value Method. Other weight functions are possible in case of all
three formulations. For instance, if in case of the inverse formulation, the basis and
weight functions are identical, then one obtains the so-called Trefftz method, which
shall not be covered here.
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Fig. 8.16 shows the equipotential lines of two parallel conducting cylinders of
potential , calculated with the Direct Boundary Value Method. One obtains
the expected result, namely the circles of Apollonius, which was already calculated
in Sections 2.6.3 and 3.12. This represents a plane problem which was solved by
using eqs. (8.6) and (8.7).

Fig. 8.17 and Fig. 8.18 present fields which were calculated by coupling of
finite elements and boundary elements. Fig. 8.17 demonstrates the advantage of
this approach when applied to problems in finite regions versus the use of solely
using finite elements. If only finite elements are used, then the problem is solved
by approximation in a region that has to be chosen not too small but finite, and on

Fig. 8.16

 ϕo±

Fig. 8.17
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its boundaries one has to, more or less arbitrarily, choose (roughly estimated)
boundary conditions. The equipotential lines in Fig. 8.17a and Fig. 8.17b were
calculated by only applying finite elements. Fig. 8.17a used  and Fig. 8.17b
used  on the boundary. In contrast, Fig. 8.17c was obtained by
coupling of finite elements and boundary elements, and it obviously delivers the
much better results. The fields of Fig. 8.18 were also calculated by means of the
coupled method. It represents an eddy current problem. There are two infinitely
long wires, carrying a time independent constant current whose magnetic field
penetrates an also infinitely long non-magnetic, conducting cylinder of square
cross section. Fig. 8.18 shows the magnetic field shortly after suddenly turning on
the current, i.e., at the dimensionless time . The remaining illustrations
show the field at , , and . Already for ,
the final state is almost reached. The plots of the fields for times greater than

 can hardly be distinguished. The two problems of Fig. 8.17 and
Fig. 8.18 were calculated by use of the so-called direct method while considering
eqs. (8.6) and (8.7). Of course, when coupling, the boundary elements on the
boundary, have to be chosen such that they are always compatible with those sides
of the finite elements which form the boundary and in particular, that they agree at
the nodal points.

ϕ 0=
∂ϕ ∂n⁄ 0=

Fig. 8.18
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8.9 Method of Image Charges

The Method of Image Charges is oftentimes suited to solve field theoretical
problems. This is initially motivated by a number of specific problems, which may
even be solved exactly by use of the image charge method, for example, the
problem of a sphere within the field of a point charge or within a uniform field
(sects. 2.6.1 and 2.6.2), the problem of a conducting cylinder within the field of a
uniform line charge (Sect. 2.6.3), or that of a point charge in a dielectric half-space
(Sect. 2.11.2). Analogous procedures exist as well for the case of stationary electric
current fields (e.g., Sect 4.5), in magnetostatics (e.g. Sect. 5.9), and for time
dependent problems (e.g. Sect. 6.5.3).

For electrostatics, the perhaps most general statement on this subject is
contained in Kirchhoff’s theorem eq. (3.57), which is important in many respects.
It states, among other things, that the fields inside an arbitrarily shaped region,
generated by an arbitrary charge distribution located outside this region, can also
be generated by placing suitable surface charges and dipole layers on the surface of
this region and vice versa. The consequence is that boundary value problems can
be treated as if the fields within the region of interest were generated by
appropriately distributed charges outside of the region. These charges may occur in
arbitrary configurations and form dipoles or more generally multipoles (as for
example, for the case of a conducting sphere inside an electric field where two
image charges occur, which form an ideal dipole). One should not interpret the
term image charges to narrowly. It may represent arbitrary distributions of point
charges, line charges, volume charges, or even an arbitrary distribution of
multipoles. 

Usually, one determines the assumed image charges by satisfying the given
boundary conditions at selected points of the surface, i.e., one uses the Collocation
Method, perhaps in its overdetermined form. Therefore, the Method of the
Weighted Residuals is ultimately where the potentials or the fields of the image
charges represent the basis functions. Of course the Collocation Method could be
replaced by other methods, like that of the least squares. However, the Collocation
Method has the big advantage that it avoids potentially tedious integrations. If one
attaches all image charges to the surface in form of surface charges, then the
boundary element method emerges. This shows that the distinction between the
methods is somewhat fuzzy. 

The main problem of the various variants of image charge methods is that
there is no clear methodological approach for their application. The user needs
experience and good intuition for the peculiarities of the particular problem in
order to determine the kind, and location of the image charge configuration. Once
this is done, the remaining task is simple, particularly when using the collocation
method. Consider n image charges, then the Ansatz, for example when using
potentials, is 
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 . (8.215)

rk is the location where the k-th image charge is located,  is the potential
of the unit charge (unit multipole), and Mk is the charge (multipole moment). If one
has Dirichlet boundary condition 

(8.216)

to be fulfilled on the surface A, then one needs to choose (at least) n collocation
points . This results in the system of equations

(8.217)

or with 

 , (8.218)

 . (8.219)

The values of Mk have to be calculated from this system of equations. This
approximation may not satisfy the given requirements. There are a number of ways
to improve the solution. For instance, the number of image charges could be
increased. Particularly, repeating the calculation with changed image charge
locations may significantly improve the result. Another option is to not only
consider the coefficients Mk to be variable, but also the locations rk and then
determine them by means of the collocation method. However, the big
disadvantage of this approach is that the system of equations becomes non-linear.

Overall, it is questionable whether the image charge method will be of great
significance in the future. Although there are a number of problems for which it is
suitable, in general however, in particular the boundary element methods are
theoretically better founded and represent a methodologically clearer path for the
solution of such problems.

8.10 Monte-Carlo Method

The Monte-Carlo method is particularly suited for stochastic problems, which we
will not discuss here. But it may as well be used to solve deterministic problems,
for example to calculate definite integrals, for the solution of extrema problems, to
solve linear systems of equations, etc. In the context of electromagnetic field
theory, the Monte-Carlo method can be used to approach boundary value problems
involving the Laplace and Poisson equation, as well as, boundary and initial value
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problems of the diffusion equation. Although these problems are of deterministic
nature, they are also problems whose solutions coincide with certain expectation
values of suitable stochastic processes. An overview on Monte-Carlo methods give
the books of Hengartner and Theodorescu or Buslenko and Schreider [30, 31].

Here, we will initially analyze the Dirichlet boundary value problem of the
Laplace equation. To simplify, we choose a rectangular area as illustrated in
Fig. 8.19. The area is discretized by introducing little squares where the length of
the sides is h. Internal points are referenced by P and boundary points by Q. Let a
symmetric random walk start at point P0, as it was described in Sect. 8.5. For the
first step, each of the neighboring points is reached by the probability 1/4. This
process is repeated until the boundary point Qi is reached. This is where the
random walk ends, i.e., the particle is absorbed. Let  be the
probability for a random walk that starts at Pj and ends at Qi. Then the relation for
the points P0 through P4 drawn in Fig. 8.19 becomes

. (8.220)

Furthermore, it must of course be:
 . (8.221)

The reason is that a particle is absorbed at a boundary point Qi. Now we define the
quantity 

 , (8.222)

where s represents the total number of boundary points. Then, it follows from
(8.22) that

Fig. 8.19
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(8.223)

and

 . (8.224)

These two equations establish the relation between the random walk and the
boundary value problem where F has to be identified with the potential. The result
is identical to the one obtained by applying finite differences. Eq. (8.223)
corresponds to the five-point formula (8.159) while (8.224) represents the
corresponding boundary conditions. On the other hand, one sees that the quantity
F, the potential, can be interpreted in a statistical way, that is, we could say it is a
result of rolling a dice. Let us start many random walks at every internal point, for
example at Pj. They terminate with different probabilities at the different boundary
points Qi. which, in case of the Monte-Carlo method, are determined by a computer
almost experimentally by simulation of the random walk process. By eq. (8.222),
the potential at the point Pj is nothing else than the average

 , (8.225)

obtained by using these probabilities. We may phrase this in a slightly different
manner. We start many random walks at Pj and average the potentials of all
boundary points that were thereby reached. The i-th random walk ends at Qi with
ϕi. Then 

 . (8.226)

The Poison equation
(8.227)

may be treated in a similar manner. Here, we shall only provide the result:

 . (8.228)

r represents the number of all internal points,  is the probability that a
particle starting at point Pj passes through the point Pk, and

 . (8.229)

The values  existing at the points passed, are averaged by the corresponding
probabilities and are responsible for the second sum in eq. (8.228). This sum also
contains the addend . This term is necessary because the particle
may pass through its starting point again. The additional term  can be
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interpreted as the product of the probability 1 with . The fact that the particle
originates at point Pj implies that it certainly passes this point. This should not be
considered again in . One might cancel the term , which would
require to replace  by . If the potential vanishes on the
boundary, then

 . (8.230)

In this case, we may write 

 , (8.231)

that is, one averages the  over all internal points passed during very many random
walks, including the starting point. In contrast to eq. (8.226) where the index i
characterized subsequent random walks, here it addresses all passed internal
points. 

The results are related to the integral representations of the corresponding
Green’s functions. Comparison of eq. (8.225) and (3.94) reveals that  –
with the exception of constant factors – is the matrix that results from discretization
of . Eq. (8.230) shows that  is just the discretized from of
G in eq. (3.93). The Monte-Carlo method serves here, for the most part, in
approximating the Green’s functions by matrixes whose elements can be regarded
as probabilities, and which can be either calculated or determined experimentally,
namely by simulation of the random walk by a computer. 

The solution of the diffusion equation is obtained in similar fashion. It shall
not be discussed here. The interested reader is referred to the literature [30].

Two simple examples shall serve as illustration. The Dirichlet boundary
value problem of the Laplace equation for the area given in Fig. 8.6, and the shown
discretization with only three internal points shall be presented first. The potential
at the top boundary shall be given as  (dimensionless). For the remainder
of the boundary it shall be . From eq. (8.225) and with the probabilities
(8.155) we obtain 

 .

One can easily verify that using finite differences yields the same result. 
Our second example is the one-dimensional problem shown in Fig. 8.5 where 
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.  .

Eq.(8.228), together with the probabilities (8.154) give
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or

 .

Here again, the finite differences yield the same result. Of course, when applying
the Monte-Carlo method to an actual problem, then the necessary probabilities are
not calculated but determined by means of random numbers, fed into a computer
simulation. This requires many random walks to determine the necessary
probabilities with sufficient reliability. The Monte-Carlo method is attractive but
the necessary effort is significant because the probabilities need to be determined
for every internal point.

Fig. 8.20 shows a plane Dirichlet boundary value problem that was calculated
by means of the Monte-Carlo method (Fig. 8.20a: problem definition; Fig. 8.20b
equipotential lines).
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A Appendices

A.1 Electromagnetic Field Theory and Photon Rest Mass

A.1.1 Introduction

Maxwell’s equations constitute a significant foundation for science and technology.
To continuously discuss them and question if, in light of new discoveries, these
equations require modification or if they remain entirely accurate and thus valid, is
rather natural. This leads to a more thorough understanding of the preconditions
and peculiarities of such familiar theories, which often times are taken as too self-
evident. Moreover, these discussions emphasize that electromagnetic Field theory
is not an isolated body of knowledge, but closely intertwined with all of physical
science. 

At first sight, it may sound bizarre to relate the question of the exact validity
of Coulomb’s law of electrostatics, to the question on whether the rest mass of light
quanta identically vanishes or not. This Appendix shall be dedicated to this issue,
and its implications for electromagnetic field theory.

We start with the theorem of conservation of energy from classical
mechanics. It states that the total energy W of a particle is constant:

(A.1.1)

 is the kinetic, U the potential energy of the particle which
travels in a “conservative” force field, where m is its mass, v its velocity, and p its
momentum. In Quantum Mechanics, physical quantities are replaced by operators.
This transforms the energy theorem into Schrödinger’s equation.

 : operator of the total energy (A.1.2)

 : operator of the momentum (A.1.3)

 : operator of the kinetic energy (A.1.4)

thus

 (A.1.5)

Eq. (A.1.5) constitutes the energy theorem in operator form. Applying it onto a
function  gives the Schrödinger equation

 . (A.1.6)

In case of fast (“relativistic”) particles, when the rest mass is , one has:

W 1
2
--mv2 U+ p2

2m
------- U+ const.= = =

1 2⁄( )mv2 p2 2m⁄=

W iÑ ∂
∂t
----⇒

p iÑ∇–⇒

p2

2m
------- Ñ2∇2

2m
------------– Ñ2

2m
-------∆–=⇒

iÑ ∂
∂t
---- Ñ2∇2

2m
-------------– U+=

ψ

iÑ∂ψ
∂t
------- Ñ2

2m
-------∇2ψ– Uψ+=

m0
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 . (A.1.7)

The associated wave equation, we could call it the relativistic Schrödinger
equation, is the so-called “Klein-Gordon equation”. It is obtained from (A.1.7) in
the same manner as one finds the Schrödinger equation (A.1.6):

or

 . (A.1.8)

For  (e.g., for photons when making the usual assumption that their rest
mass vanishes) this becomes

 . (A.1.9)

One thereby obtains the wave equation known from electromagnetic field theory. It
has to be regarded as a special case of the Klein-Gordon equation (A.1.8), which
conversely, is the generalization of the wave equation for particles whose rest mass
does not vanish. There is a restriction one has to mention, namely that this is valid
only for particles with integer number spin (Bosons), but not for those with half
integer spin (Fermions). Another equation, also traceable to the Klein-Gordon
equation applies to Fermions. This is the Dirac equation, which will not be
discussed here.

Using the Compton wave length  and introducing the abbreviation:

 , (A.1.10)

lets one write the time-independent Klein-Gordon equation in the following way:
 . (A.1.11)

Its simplest spherically symmetric solution is the so-called Yukawa potential.

(A.1.12)

This can easily be proven by substituting the radial part of the Laplace
operator

 . (A.1.13)

Yukawa introduced this potential, named in his honor, into the theory of nuclear
forces. From their short reach, he predicted the existence of a nuclear field whose
quanta possess a rest mass of  (  is the rest mass of electrons). He
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2
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m0 0=
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----∂2ψ
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---------– 0=
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κ
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--------- 2π
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------= =

∇2ψ κ2ψ– 0=
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---e κr–=
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-----=

m0 200me≈ me



A.1   Electromagnetic Field Theory and Photon Rest Mass 571

called those particles Mesons, which was a brilliant prediction. The particles he
referred to are now know as π-Mesons (after an initial confusion with the µ-
Mesons). 

All this applies in principle to photons as well. Should it turn out that these
have a rest mass that differs from zero (even by an arbitrarily small amount), then
the potential of an electric point charge Q would not be the Coulomb potential

 , (A.1.14)

but the Yukawa potential

 . (A.1.15)

Consequently, Maxwell’s equations would need to change in a significant way.
The Yukawa potential is not related to the formally similar potential, known

in classical field theory as the Debye-Hückel potential:

(A.1.16)

This potential is a result of classical field theory. The exponential decay is not
related to the charge Q itself, but results from volume charges of the opposite sign,
which are distributed in a spherically symmetric manner around Q and thereby
shield the field of Q more and more as the distance to Q increases (hence the term
shielded Coulomb potential, Sect. 2.3.2).

The Coulomb potential yields
 . (A.1.17)

The Yukawa potential for photons with , i.e., for  yields
 . (A.1.18)

Fig. A.1.1a illustrates the Coulomb field, while Fig. A.1.1b shows the Yukawa
field. All field lines extend to infinity in case of the Coulomb field. In case of the
Yukawa field, the number of field lines diminishes as the distance to the charge
increases, even though there are no charges at those end points (the Debye-Hückel
field would look the same way, but the field lines would end at charges). 

If this were so, then Maxwell’s equation 

ϕ Q
4πε0r
--------------=

ϕ Q
4πε0r
--------------e κr–=

ϕ Q
4πε0r
--------------e r d/–=

D∇• ρ=
m0 0≠ κ 0≠

D∇• ρ ε0κ2ϕ–=

Fig. A.1.1

a) b)
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 (A.1.19)

required modification because otherwise, this would be in conflict with the charge
conservation. We introduce the vector potential A, which by (7.183) allows to
express

 , (A.1.20)

and apply the Lorentz gauge (7.186)

 , (A.1.21)

then, instead of (A.1.19), we now obtain

 . (A.1.22)

One can easily see that this satisfies the charge conservation. Taking the divergence
of (A.1.22) gives

and now applying (A.1.18), together with (A.1.21) gives

,

that is,

 .

The other of Maxwell’s equations remain unchanged. We now have the following
system of equations, which is called the Proca-equations:

Of course, for  this results again in Maxwell’s equations.
First, a remarkable fact is that the Proca equations, besides the usual fields E,

D, B, H, the volume charge density ρ, and the current density g, also contain the
potentials A and ϕ. These potentials actually are part of the theory (for finite
photon rest mass) and not auxiliary fields, introduced later to simplify the

(A.1.23)

(A.1.24)

(A.1.25)

(A.1.26)
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mathematical calculations. They are real fields that can not be eliminated. On a
side note: Ultimately, they are real also in the context of Maxwell’s theory, as the
experiment of Bohm-Aharonov reveals (see Appendix A.3).

A consequence of eqs. (A.1.23) through (A.1.26) is that the potentials occur
in Poynting’s theorem, which one obtains in its generalized form from these eqs.:

.

(A.1.27)

Using

(A.1.28)

and the energy density

(A.1.29)

gives

 . (A.1.30)

Both, the Poynting vector S, as well as the energy density, contain additional terms
that include the potentials ϕ and A. And again, for , we obtain the classical
results, which we have discussed in Sect. 2.14.

Substituting the relations 

(A.1.31)

and
(A.1.32)

into the Proca equations yield the inhomogeneous wave equations in the following
form.

(A.1.33)

(A.1.34)

They differ from the equations of the classical theory by the additional terms 
and . Then, for the static case we have for ϕ

 , (A.1.35)

from which for a point charge 
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 , (A.1.36)

we find the Yukawa potential

 , (A.1.37)

from which we started. For an arbitrary distribution of volume charges  we
find

 . (A.1.38)

Compare this to the classical result (2.20)

 , (A.1.39)

which agrees with the Yukawa potential for the special case of .
All this has peculiar ramifications for field theory, which can be demonstrated

via several simple examples. Furthermore, comparison of these theoretical
consequences with experimental results allows to gain further insight into the
nature of light quanta. 

A.1.2 Examples

A.1.2.1 Uniformly Charged Spherical Surface

Consider a simple electrostatic problem, the field of a uniformly charged spherical
surface. The solution shall be just given, not derived. That this is the correct
solution can easily be verified. The fields are purely radial (Fig. A.1.2) and the
electric field is

 , (A.1.40)

(A.1.41)

and the potentials are

ρ Qδ r( )=

ϕ Q
4πε0r
--------------e κr–=

ρ r( )

ϕ ρ r '( )
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---------------------------e κ r r '–– τ'd∫=
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--------------------------- τ'd∫=

κ 0=

Fig. A.1.2
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 , (A.1.42)

 . (A.1.43)

What is extraordinary here, is that  is not constant and therefore .
Essentially, this is evident: It is a unique characteristic of the Coulomb field, i.e., of
the quadratic distance relation, that there are no forces inside of a uniformly
charged spherical surface (this is also true for gravity). Any other field law does not
result in vanishing forces. Fig. A.1.3 makes this obvious. Search for a field inside
of a uniformly charged spherical shell  is therefore one of the oldest methods
to verify Coulomb’s law. From today’s perspective, we can interpret these
experiments as an effort to measure the rest mass of light quanta. 

Now, let’s consider another electrostatic problem, the field and the
capacitance of an ideal plate capacitor.

A.1.2.2 The Plane Capacitor and its Capacitance

According to Fig. A.1.4, we distinguish 5 regions, indicated by the indices 1
through 5. The regions outside the capacitor are 1 and 5. The conducting plates are
in the regions 2 and 4. The region 3 is inside, between the plates. The potentials are

(A.1.44)

(A.1.45)

(A.1.46)

(A.1.47)

 , (A.1.48)
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where V is the voltage on the capacitor. One can easily verify that (A.1.11) and all
required boundary conditions are satisfied. The result is peculiar in several
respects. 
a)  and  are location dependent, i.e., there are non-vanishing electric fields 

in regions 1 and 5. 
b) There is no field inside the plates and the potential is constant. This is chiefly 

the reason for the need of volume charges, which result from (A.1.25):

 . (A.1.49)

c) The gradient of the potential has discontinuities at  and [, i.e., 
the electric field is discontinuous, which means that there are surface charges 
on both surfaces, the inner and outer surface of the plate. They are:

 , (A.1.50)

 . (A.1.51)

From this, we find the capacitance to be 

 , (A.1.52)

where

 , (A.1.53)

is the classical capacitance and A the area of the capacitor plates. For ,
 and therefore . One obtains the same result

when calculating the total energy in all 5 regions according to eq. (A.1.29) and then
adding

Fig. A.1.4

z

1 2 3 4 5

z = -b z = +a z = +bz = -a

d = 2ap = b-a

z = 0

ϕ1 ϕ5

ρ ρ0 ε0κ2ϕ
ε0κ2V

2
---------------±= = =

z a±= z b±=

σ a±
ε0κV

2
------------ κd

2
------coth±=

σ b±
ε0κV

2
------------±=

C Q
V
----

A
ε0κV

2
------------

ε0κV
2

------------ κd
2

------coth d
ε0κ2V

2
---------------+ +

V
--------------------------------------------------------------------------------------= =

       C0
κd
2

------ 1 κd κd
2

------coth+ +=

C0
ε0A

d
---------=

κ 0→
κd 2⁄coth 1 κd 2⁄( )⁄→ C C0→



A.1   Electromagnetic Field Theory and Photon Rest Mass 577

 , (A.1.54)

because of symmetry
(A.1.55)

and
 . (A.1.56)

This simple example makes it obvious, that one must part with the familiar
pictures.

A.1.2.3 The Ideal Electric Dipole

As a further example, consider the field of an electric point dipole, located at the
origin and pointing in the positive z-direction. Then

(A.1.57)

and the related field is

, (A.1.58)

, (A.1.59)

. (A.1.60)

Of course,  yields the classical result (Sect. 2.5, eq. (2.60)):

 . (A.1.61)

A.1.2.4 The Ideal Magnetic Dipole

Consider a magnetic dipole m at the origin and oriented in the positive z-direction,
then we get for the vector potential (in spherical coordinates)

 , (A.1.62)

where

(A.1.63)

and for the magnetic field

, (A.1.64)
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, (A.1.65)

 . (A.1.66)

In the classical situation ( ), it is permissible to calculate the magnetic dipole
field outside of the origin from the gradient of a scalar magnetic potential,
eq. (5.55)

 . (A.1.67)

It has the same form as the classical potential of the electric dipole (A.1.61). From
this results a magnetic dipole field that has the same form as the electric dipole
field. Formally, a distinction between them is not possible. Not so for . Both
dipole fields, (A.1.58) through (A.1.60) and (A.1.64) through (A.1.66) exhibit
different forms. This is necessary, since because of (A.1.24), the magnetic dipole
field is not irrotational, even in the static case:

 . (A.1.68)

Therefore, to obtain it from a scalar potential is impossible. Eq. (A.1.68) applies to
all magnetostatic fields in current free regions. 

The magnetic dipole field can be expressed as superposition
 , (A.1.69)

where

 , (A.1.70)

 , (A.1.71)

(A.1.72)

and

 , (A.1.73)

 , (A.1.74)

 . (A.1.75)

The part of the field  at the surface of a sphere with a fixed radius r exhibits the
characteristics of a classical dipole field, where the dipole moment appears
changed by a factor . The additional field  has the same
magnitude everywhere on the surface of the sphere but has only a component
parallel to the axis. 
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 . (A.1.76)

This fact is one to which we will return later.

A.1.2.5 Plane Waves

Interesting are also questions related to wave propagation. Here also, there are
significant discrepancies to the classical theory. We restrict ourselves to plane
waves in the infinite homogeneous space without currents or charges. For this case,
(A.1.33) and (A.1.34) read

, (A.1.77)

 . (A.1.78)

For plane waves travelling in the positive z-direction we have
, (A.1.79)

 . (A.1.80)

Substituting these in the wave equations (A.1.77) and (A.1.78) yields the
dispersion relation

or

 . (A.1.81)

From a strictly formal point of view, it has the same form as e.g. that of a plasma
wave

 . (A.1.82)

However, the reason is of an entirely different nature. Because of the Lorentz
gauge (A.1.21) the potential is

(A.1.83)

and one obtains the following fields:
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 , (A.1.85)
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 , (A.1.86)

and 
 , (A.1.87)

 , (A.1.88)

 . (A.1.89)

This is a remarkable result. We obtain three (instead of the classically two)
independent solutions.
a) If only : We obtain one linearly polarized TEM wave (with  and 

) as in the classical theory.

b) If only : We obtain a second linearly polarized TEM wave (with  

and ) as in the classical theory.

c) If only : There is only an electric field in propagation direction but no 
magnetic field at all. This is a longitudinal wave, which does not exist in this 
form within the classical theory. The classical theory allows for longitudinal 
waves only if there are volume charges. Classically we have

and with  we obtain
 .

For a plane wave

and also
 ,

i.e., k and D are perpendicular to each other. Likewise, because of ,
for the magnetic field of a plane wave we have

 
However, because of (A.1.25) this is no longer the case if . Now, for

 we have
 ,

which allows longitudinal waves to exist.
Furthermore, the dispersion relation (A.1.81) bears remarkable consequences.

The phase velocity becomes

 . (A.1.90)
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Conversely, the group velocity is

 . (A.1.91)

Furthermore
 . (A.1.92)

Contrary to the classical case, we now have dispersion, even for plane waves in
lossless, uniform media (e.g., even in a vacuum), and furthermore, it is no longer

. Another important point is that the frequency may no longer be
arbitrarily small. We obtain the lowest possible frequency from the limit 
(cutoff frequency)

(A.1.93)

to which we will return. The relations are illustrated in (Fig. A.1.5). After

multiplication by  and using (A.1.10), the dispersion relation (A.1.81) can be
written in the form

 . (A.1.94)

Now, the energy of a light quantum is 
(A.1.95)

and its momentum is
(A.1.96)

thus, we obtain
 , (A.1.97)

which is nothing else than the relativistic energy of a particle with a momentum of
p, which was our starting point (eq. (A.1.7).
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The wave equation is basically nothing else than the energy theorem, which is
the reason why the dispersion relation stemming from the wave equation leads
back to the energy theorem. This is also true in the classical case, . In this
case we have

 ,

 ,

 .
We do not intend to increase the number of examples any further. It has been
shown that on the basis of the current theory, many familiar concepts from the
classical field theory are no longer valid. It remains the question, what the actual
rest mass of light quanta really is and whether or not we have to give up Maxwell’s
equations in favor of the Proca equations. We have to start by stating that based on
our current knowledge, we can not definitely answer this question. However, all
measurements taken so far, and all interpretations of the known electromagnetic
phenomena do not suggest that the light quanta’s rest mass  is anything but
zero. Every arbitrarily accurate measurement is limited by its own precision in its
ability to make statements on upper limits of the rest mass . We will conclude
by elaborating some more on this issue.

A.1.3 Measurements and Conclusions

A.1.3.1 Magnetic Fields of Earth and Jupiter

Known from measurements of the Earth’s magnetic field (including satellite data)
is that, if at all, this field deviates only very little from that of a classical dipole
field. It is safe to say, that at the equator, the additional field of  given by
(A.1.76) is much smaller than the field  in (A.1.70) through (A.1.72), at least by
a factor of . This means that

Therefore, 
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 ,

where r is the earth’s radius and with the values

 ,

 ,

 ,

this gives
(A.1.98)

that is, should the mass  differ from zero, it may only be as large as this rather
tiny value. 

An even smaller limit can be found analyzing satellite data from the magnetic
field of Jupiter [32], namely

 . (A.1.99)

A.1.3.2 Schumann-Resonances

According to (A.1.93), the frequency of electromagnetic, plane waves may not
become arbitrarily small but its lower limit depends on . Of course, low
frequency goes with long wave length, which prohibits laboratory experiments to
answer this question.

However, the earth with the lower limit of the ionosphere constitutes a rather
large resonant cavity whose resonant frequencies are know as Schumann-
resonances. The lowest resonance is at about 8 Hz. Suppose (A.1.93) were
applicable unchanged to resonant cavities (which is not really precise because the
dispersion relation for a resonant cavity depends on parameters describing its
geometric shape), then we obtain.

and

(A.1.100)

A more accurate calculation, taking into account the mentioned geometry factor of
the system [33] yields a slightly larger upper limit:

 . (A.1.101)

A summary of various values and methods to determine this limit is listed in
Fig. A.1.6, which is based on a similar figure by Goldhaber and Nieto [32].
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------------= = 2π 8⋅≤
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A.1.3.3 Fundamental Limit -- The Uncertainty Relation

The question of the rest mass of light quanta requires a certain degree of caution.
Strictly speaking, the question whether the mass is exactly zero or not is not so
useful. To determine the period of a process requires to observe it for a time span of
at least one period. A photon rest mass of zero correlates to a cutoff frequency of
zero, and its observation requires an infinite amount of time, while the age of the
universe is finite. Considering the apparent age of the universe provides the largest
possible observation time and thus, at best, we can find

where τ is the age of the universe and . Therefore

Fig. A.1.6

Proton mass 1.6 10 27– kg⋅( )

Electron mass  9.1 10 31– kg⋅( )

Coulomb; 1785: Coulomb law 4 10 42– kg⋅( )
Robinson; 1769: Coulomb law 4 10 43– kg⋅( )
Cavendish; 1773: Coulomb law 2 10 43– kg⋅( )
Maxwell; 1873: Coulomb law 10 44– kg( )

Kerndall, Kroll 1971: Schumann resonance 4 10 49– kg⋅( )
Williams, Faller & Hill 1971: Coulomb law
Schrödinger;  1943   magn. field of Earth 

 
 

2 10 50– kg⋅( )

Goldhaber & Nieto;  1968   magn. field of Earth 4 10 51– kg⋅( )
Davis, Goldhaber & Nieto; 1975  magn.field of Jupiter(8 10 52– kg)⋅

10-70 limit due to uncertainty relation 4 10 69– kg⋅( )

-60

-30

-26

10

10

10
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-42

-44

-46

-48
Plimpton & Lawton; 1936: Coulomb law 4 10 47– kg⋅( )

? (area currently unknown)
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c2τ
-------=
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or
 . (A.1.102)

This is basically Heisenberg’s uncertainty relation. The statement is, that it makes
no sense to measure the mass to an arbitrarily small limit. The smallest mass or
mass defect which we may consider is

 , (A.1.103)

whereby we have based this on  or . More exact
measurements of the mass required measurement durations beyond the age of the
universe. Therefore, whether  is exactly zero or not, is not the right question to
ask. Even though not from a mathematical perspective, nevertheless, a mass of

 can physically be identified with zero or be at least indistinguishable from
zero. However, Fig. A.1.6 reveals that between the current findings and the
fundamental limit lies an unexplored area of 17 orders of magnitude. When basing
the calculation on the uncertainty principle itself , the limit becomes

, compared to above, a value reduced by a factor of . 
The question whether or not it is necessary to modify Maxwell’s equations

remained unanswered. Nevertheless, one could verify, that within the limits of our
current accuracy in taking measurements, we may rest assured that we can trust
Maxwell’s equations. There is no know phenomenon which Maxwell’s equations
would not be able to describe with sufficient accuracy.

A.2 Magnetic Monopoles and Maxwell’s Equation

A.2.1 Introduction

When looking at Maxwell’s equations (1.77), it is easy to see that they are entirely
symmetric, as long as there are neither charges nor currents present. Adding
charges or currents makes them unsymmetrical (1.72). The reason is the existence
of electric charges and currents, but nonexistence of magnetic charges or currents,
at least as far as our current knowledge goes.
Conversely, if such magnetic charges or currents exist, Maxwell’s equations would
be symmetric. When pondering this, the question whether there are no such
magnetic charges or currents, is almost inevitable. How does one know that there
are not any? The only answer is that so far, no one has discovered them. The
symmetry issue is sufficient motivation for a quest for them. There are other
arguments as well. They originate from Dirac and have enabled him to make
hypothetical predictions of potentially existing magnetic monopoles as integer
multiples of an elementary, magnetic charge (that is a fundamental magnetic
quantum). Dirac’s argument is of quantum mechanical nature and results from the

m0c2τ h=

Wτ h=

m0
h

c2τ
------- 2.33 10 68– kg⋅= =

τ 1010a = τ 3.15 1017s⋅=

m0

10 68– kg

∆W ∆t⋅ Ñ=
m 4 10 69– kg⋅≥ 2π
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quantization of the angular momentum. Dirac’s magnetic quantum is related to the
electric charge quantum

 .
The existence of magnetic charges would thereby also explain why the electric
charge is quantized. Both, magnetic and electric charge would be quantized and
their quantization would be a result of the quantization of the angular momentum
(a purely mechanical quantity!). Indeed, dimensional analysis of the product of
magnetic and electric charge reveals that it has the dimensions of angular
momentum:

(Coulomb’s law for electric charges) ,

(Coulomb’s law for magnetic charges) .

Therefore, analysis of the dimenions reveals

Suppose magnetic charges existed, then we might ask how Maxwell’s equations be
altered. One finds (as explained in Sect. 1.12) that

 , (A.2.1)

 , (A.2.2)

 , (A.2.3)

 . (A.2.4)

Besides the electric charge density , we now have the magnetic charge density
. B is no longer source free. Besides the electric current density , we now

have the magnetic current density . The need for the occurrence of  in the
law of induction (A.2.1) is a result of charge conservation, which we must require
for both electric and magnetic charges. Taking the divergence of (A.2.1) and
(A.2.2) gives

 ,

 .
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When applying (A.2.3) and (A.2.4), we obtain the continuity equations, which now
expresses charge conservation for both types of charges.

 , (A.2.5)

 . (A.2.6)

However, the ultimate authority in such questions is not our desire for
symmetry, but reality. In any case, an answer to the question on the existence of
magnetic “monopoles” requires experimental verification. Science does not know
any other avenue. Where do we stand here?

An answer requires first to refine our language, which is necessary in order to
pose the question with sufficient accuracy and meaning. It will turn out that one has
to be very precise in formulating the question, in order to avoid getting lost in
chasing bogus problems.

A.2.2 Dual Transformations

One starts by realizing that in the generalized Maxwell equations as of (A.2.1)
through (A.2.4), the electric and magnetic fields, charges, and currents are not
uniquely defined. If we start from these equations and apply the following dual
transformation:

 (A.2.7)

(  is an arbitrary, dimensionless parameter, f is a factor with the dimensions of a
resistor), then new equations for the transformed quantities E’, D’, B’, H’, ρ’, g’
emerge: 

(A.2.8)

(A.2.9)

(A.2.10)
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 , (A.2.11)

i.e., Maxwell’s equations again. Consequently, there is a continuum of dual
transformations, for which Maxwell’s equations are invariant. Invariant are also all
other important and observable quantities which can be constructed from the fields.
These quantities include for example, energy density and Poynting vector:

, (A.2.12)

 , (A.2.13)

as well as the relations for the generalized forces
, (A.2.14)

(A.2.15)

where
. (A.2.16)

 and  (also  and ) are electric and magnetic charges, respectively.
They are volume integrals of the respective densities  and  (also  and

), which transform like the charges. The overall conclusion is that there is no
measurement or experiment which might force us to adopt one system of quantities
over another, and require it to be the only true system. The consequence is that it is
not possible to absolutely, positively distinguish between electric and magnetic
charges. No one can prevent us from, for example, also assigning a magnetic
charge to an electron.

The transformation (A.2.7) may become more plausible if we consider some
special cases of it.
a) For , ,  we find:

 ;  ;  . (A.2.17)

This implies that nothing has happened. This is the identity transformation.
b) For , ,  one finds

 ;  ;  . (A.2.18)

This case transforms all electric quantities into magnetic ones, and vice versa.
In exactly this sense is the field of an oscillating magnetic dipole, which we
have found in eqs. (7.306) and (7.307), the field dual to the oscillating electric
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dipole of eqs. (7.264) and (7.265). Dual transformations are generally rather
useful. They can be used, in conjunction with already obtained solutions to
Maxwell’s equations, to construct additional solutions by a suitable dual trans-
formation. 

c) For , ,  we find: 

 ;  ;  . (A.2.19)

All quantities have now changed their sign. Obviously, one may, and this is 
apprehensible, refer to all positive charges as negative ones and vice versa, as 
long as we allow the fields to change their sign as well.
We conclude that Maxwell’s equations do not allow for an absolute

distinction between electric and magnetic charges. 
To illustrate this more, we consider a hypothetical particle with an electric

charge  as well as a magnetic charge . Then we transform:
(A.2.20)

 , (A.2.21)

and choose  such that , i.e., 

 . (A.2.22)

This makes
, (A.2.23)

 . (A.2.24)

We could have chosen

, (A.2.25)

which would have resulted in 
, (A.2.26)

 . (A.2.27)

Consequently, one has the choice to pick, ad libitum, for one and the same particle,
either to possess a purely electric charge, or a purely magnetic charge, or
concurrently having a magnetic and an electric charge. This allows us, without
limitation, to regard all known particles as having both, electric and magnetic
charge, while all of Maxwell’s equations apply now in their full symmetric form.
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The question arises, if the quest to determine whether magnetic charges exist or
not, is really an insignificant pseudo question? It is only so, if we do not pose the
question accurately enough.

So far, we have considered a single elementary particle, for which we were
able to let  by a suitable choice of a parameter. For multiple, different
types of particles, this is concurrently possible only if 

assumes the same value for all of them. If this is not the case, then the dual
transformation does not enable us to let all magnetic charges vanish. In this case,
there are fundamental magnetic charges which can not be removed by a
transformation. This means that, essentially, the only relevant question is whether
the ratio

has the same value for all elementary particles or not. This allows one to pose the
question for the existence of magnetic monopoles accurately. Our starting point,
which was the question of the symmetry of Maxwell’s equations has now become
almost insignificant. If one chooses so, one can make Maxwell’s equations
symmetric, regardless of whether there are essential magnetic charges or not. 

This clarification is important. It is also an interesting example to illustrate
how asking the appropriate questions in a precise manner can be tantamount to not
get lost in useless discussions of irrelevant questions.

A.2.3 Properties of Magnetic Monopoles

Now, we return to the afore mentioned Dirac monopole. When studying the
interaction between a particle with the charges ,  and another one
with the charges , , Dirac developed the hypothesis that it has to
be:

 , (A.2.28)

where n is an integer. We have already encountered this product above and found
that its dimension is that of angular momentum. From a quantum mechanical
perspective, it appears as the appropriate assumption, that this quantity is
quantized, just as the angular momentum itself. If 

(A.2.29)

then it should be 

 . (A.2.30)
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This represents a relatively large charge in the following sense. Consider the force
between two such charges

 (A.2.31)

and compare it to the force between two electrons with the same distance

 . (A.2.32)

The ratio between the two forces is 

 , (A.2.33)

where

(A.2.34)

is an important dimensionless, natural constant, it is the so-called Sommerfeld fine-
structure constant. The charge of these Dirac monopoles is large in the sense that
even for , the force between such monopoles is about 5000 times larger than
the force between two electrons. 

Instead, one can characterize the magnetic elementary quantum by the
magnetic flux which it creates. This magnetic flux is, because of (A.2.4), equal to
the charge, just as in the analogue case of the electric flux:

 . (A.2.35)

The magnetic field B, created thereby in a distance of 1m, can also be used for
characterization

 . (A.2.36)

A.2.4 The Search for Magnetic Monopoles

All these thoughts have triggered an avid search for these magnetic poles. The
questions whether
a) magnetic charges exist at all, and if
b) potentially existing magnetic charges obey Dirac’s hypothesis,
are still entirely open. Publications in the year 1975 which reported finding
magnetic monopoles turned out to be indefensible. 

Dirac’s hypothesis is usually the basis for the search for these magnetic
monopoles. This enables to calculate the effects for which to search. The
experiments are of various kinds. Some use accelerators to potentially create
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magnetically charged particles, while others study cosmic radiation as a
conceivable source. If magnetic charges can be created in probes or are already
present there, then the process of detection is, in principle, achieved by pulling
them out by means of magnetic fields, and possibly accelerate them with the
magnetic field onto a detector. 

Rocks from our Moon and from meteorites have been studied, since these
were exposed to cosmic radiation for a long time and could have absorbed
magnetic monopoles from this radiation. The magnetic monopoles can be detected
in the probe when moving it. This creates a magnetic current, which by (A.2.1)
creates the electric field

 , (A.2.37)

just as a magnetic field can be created by an electric current. This method is called
the Alvarez method. In practice, a superconducting coil is used for this purpose.
The electric field causes a current, which is then detected by the thereby created
magnetic flux (Fig. A.2.1).
The relation for this case is (A.2.1) where . One then has

or 

 , (A.2.38)

that is, the magnetic flux induced in the coil is proportional to the magnetic charge
, the number of turns of the coil , and the number of passages of the probe

through the coil . In principle, this is a relatively simple method.
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One might pose the question regarding the magnetic monopoles not only in
conjunction with new types of particles, but also with respect to known particles.
Then we may certainly assume that for electrons  – which is obvious from
the discussion on dual transformation. This determines all electric and magnetic
quantities. Any furhter transformation becomes now impossible. Under these
circumstances, the magnetic charges of other particles, for example, those of
nucleons (protons or neutrons) may be different from zero. If this were the case,
then we had to have a thereby caused magnetic field on the earth’s surface. Since
the field on the earth’s surface is less than 1 Gauss, we can estimate that the upper
limit of the magnetic charges of nucleons has to be 

 .

This charge would be smaller by a factor  than the smallest possible value
allowed by Dirac’s hypothesis. Conclusion is that either nucleons do not possess a
magnetic charge or Dirac’s hypothesis is wrong. 

In closing, we note that the positive proof for the existence of magnetic
particles has thus far not been achieved, so that this interesting question remains
still open. 

A.3 On the Significance of Electromagnetic Fields and 
Potentials (Bohm-Aharonov Effects) 

A.3.1 Introduction

The classical field theory describes the force which an electric charge , located
at  exerts on a charge , located at  by

 . (A.3.1)

This is Coulomb’s law, in which the force seems to represent an action at a
distance. This is unsatisfactory and we therefore use a different formulation.
Suppose that the charge creates a field  in the entire space, and this field acts
on other charges, where 

 . (A.3.2)

Thus, the action of a particle on another particle is described by the field that the
former exhibits at the location of the latter. When also considering the magnetic
force, the Lorentz force, we find:

 , (A.3.3)

where  represents the magnetic induction at the location of the particle. Eq.
(A.3.3) represents the equation of motion for an arbitrary particle in an arbitrary
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magnetic field, and thus, also describes the action of the field on the particle in the
sense of classical mechanics in a complete manner. This describes a local
interaction and not an action at a distance.

In quantum mechanics – for non-relativistic particles – Schrödinger’s
equation takes the place of the classical equation of motion. It results from the
Hamiltonian of classical mechanics. For an arbitrary system, the Hamiltonian is a
function of the canonical momentum and location coordinates  and ,

 . (A.3.4)

The Hamiltonian is usually referenced by the letter H and should not be confused
with the magnetic field. In this terminology, the classical equation of motion is
expressed by Hamilton’s differential equations

(A.3.5)

 . (A.3.6)

The Hamiltonian for a particle of mass m, located in a force field with the potential
 is

 , (A.3.7)

where the 
(A.3.8)

are the components of the momentum. Then 

 (A.3.9)

and

 (A.3.10)

thus

 , (A.3.11)

i.e. the classical (Newton’s) equation of the motion. 
For a particle in an electromagnetic field we have

 , (A.3.12)

where A and ϕ are the electromagnetic potentials which allow to calculate E and B:

(A.3.13)
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(A.3.14)

p is the canonical momentum,
 , (A.3.15)

which should not be confused with the ordinary momentum mv, into which it
transforms in the limit . In this case, Hamilton’s differential equations result
in the afore mentioned equation of motion (A.3.3), which we will not prove here.

Replacing the physical quantities by operators, as we have done before in
Sect. A.1, we obtain:

(A.3.16)

 . (A.3.17)

This allows to write Schrödinger’s equation in the following form

 . (A.3.18)

In particular, for a particle in an electromagnetic field, we obtain from (A.3.12)

 . (A.3.19)

Particular care is advised when calculating the square because the momentum
operator and the location operator, or the location dependent quantities,
respectively (here ), do not commute. Written more explicitly, we
obtain:

 . (A.3.20)

A.3.2 The Role of Fields and Potentials

The equation of motion which applies to classical electromagnetic field theory is

 . (A.3.21)

Its counterpart in quantum mechanics is the Schrödinger equation

 . (A.3.22)

One equation contains the fields E and B, while the other uses the potentials A and
ϕ. Within the classical theory, the potentials were introduced formally as auxiliary
quantities, whose task was to simplify the solution of Maxwell’s equations, and
they live up to their task. Two of the four of Maxwell’s equations are automatically
solved by (A.3.13) and (A.3.14), while the other two result in the inhomogeneous
wave equations (7.187) and (7.188). It is easily possible to eliminate the fields from
the equation of motion (A.3.21) and replace them with the potentials. The question
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arises, if it is also possible to eliminate the potentials in Schrödinger’s equation in
favor of the actual fields E and B. This is not possible, at least not without
difficulties. If one insists to do so, the best place to start are the inhomogeneous
wave equations (7.187) and (7.188). Their solutions are the retarded potentials
(7.195) and (7.196). Furthermore, one may express ρ and g by E and B. 

and

 .

This allows to write the retarded potentials (7.195), (7.196) in the following form

(A.3.23)

 . (A.3.24)

It does not appear to be too beneficial to substitute these expressions into the
Schrödinger equation. The thereby emerging formula would be very complicated,
without carrying any particular benefit. Furthermore, they have the inconvenient
property that the wave function ψ(r) does not only depend on the fields E(r) and
B(r) at their respective location, but also on the integrals of these fields in the entire
space, that is, the advantage of the local interaction is lost. This would defeat the
original intent for introducing these potentials in the classical theory. In contrast,
the local interaction remains in place when we keep the potentials A and ϕ in the
Schrödinger equation and regard them as real, not replaceable fields (in contrast to
simply auxiliary quantities). Our subsequent discussion will show that this is also
necessary based on different, even more fundamental reasons. 

For our later use, we will analyze two special cases of Schrödinger’s equation
(A.3.22). 
a) The first case covers 

 . (A.3.25)

If  is a solution of the equation for , 

(A.3.26)

then

 , (A.3.27)

is a solution to (A.3.25) because
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and

 .

b) The second case covers  and  (i.e. ϕ is independent of the 
location and thus, ):

 . (A.3.28)

If  is a solution of equation (A.3.26), then a solution of eq. (A.3.28) is

 . (A.3.29)

The premise that  is satisfied e.g., for a particle that moves inside a
Faraday cage whose surface has a time dependent potential. 
The potentials cause, in both cases, an additional phase factor with the phase

shift of  and , respectively.

A.3.3 The Ehrenfest Theorems

Despite the significant differences between classical mechanics and quantum
mechanics, they do not mutually contradict themselves. Stated somewhat
simplified, a result of quantum mechanics is that the averages of physical quantities
behave like classical mechanics predicts. This is expressed in Ehrenfest’s
Theorems. Using the notation  to express the average of the physical quantity
g, allows to obtain the following relations from Schrödinger’s equation:

(A.3.30)

(A.3.31)

or when combining the two

 . (A.3.32)

This is the classical equation of motion, which occurs here as a consequence of
Schrödinger’s equation. Deviations from these averages are very improbable when
dealing with macroscopic systems, which renders the difference between (A.3.32)
and the classical results negligible. However, this is not true for microscopic
systems. 
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Looking at the motion of a particle in an electromagnetic field, one obtains
from Schrödinger’s equation (A.3.32), after some tedious mathematics, Ehrenfest’s
theorem in the following form:

 . (A.3.33)

We conclude that quantum mechanics also permits to calculate the “mean” particle
trajectory by means of E and B, even in a form analogous to the classical equation
of the motion. This applies only to the average and does not describe the exact
motion of any particular particle in an electromagnetic field. The form of (A.3.33)
may initially look peculiar, but results from the fact that velocity in quantum
mechanics is an operator related with the momentum, what arises from (A.3.15)
and (A.3.17). This operator does not commute with the location operator or any of
the location dependent operators, e.g.  or . The classical
expression is of course:

 . (A.3.34)

In quantum mechanics, these expressions may not be equated. However, one can
see that in the limit of classical mechanics, Ehrenfest’s theorem in the form
(A.3.33), just yields the Lorentz force.

A.3.4 Magnetic Field and Vector Potential in an infinitely long Coil

Consider an infinitely long coil as shown in Fig. A.3.1. Its magnetic field can be
expressed by the vector potential A, where

 . (A.3.35)

The magnetic flux through an arbitrary surface is:
 . (A.3.36)

B is gauge invariant, i.e., is not affected by a transition from one vector potential to
another of different gauge, where both vector potentials may only differ by the
gradient of an arbitrary function. This makes the flux  gauge invariant as well, as
(A.3.36) makes obvious, because  can not change in this case
( ). Fig. A.3.1 shows the graph of  and . Under the
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currently assumed gauge, A possesses only a ϕ-component . Now, (see also
Sect. 5.2.3):

(A.3.37)

and

(A.3.38)

Interesting to realize is that the magnetic field outside of the coil vanishes, while
the vector potential does not. This fact will be of our interest next. We will discuss
the question whether the vector potential outside of the coil might influence, in any
way, charged particles whose behavior is described by Schrödinger’s equation. For
this purpose, we will study experiments where electron beams interfere at a double
slit, as was described by Bohm and Aharonov [34].

A.3.5 Interference of Electron Beams at Double Slit

A double slit as illustrated in Fig. A.3.2 shall be used for interference experiments
with electron beams. Starting without a coil and its magnetic field behind the slit,
we obtain an interference pattern on the screen with intensity maxima and minima
due to the impinging electron rays. The quantities (a, d, L, r1, r2, x), defined in
Fig. A.3.2 allow to calculate the difference in the geometric path length. 

 . (A.3.39)

If , then 

 . (A.3.40)

This corresponds to a phase difference of 

 , (A.3.41)

if  denotes the wave length of matter associated with the electrons, which is a
result of the de Broglie relation

 , (A.3.42)

where p represents the momentum of the electron. 
Repeating this experiment with the coil and its magnetic field in place, the

electrons from each of the interfering rays travel within the range of the vector
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potential created by the coil. The coil shall be assumed to be ideal, i.e. has no
fringing fields. The ray of electrons shall not be able to penetrate the inside of the
coil. Expressed differently, the wave function of the electrons and the magnetic
induction of the field inside the coil shall not overlap. This results in additional
phase differences between the rays along the paths C1 and C2, respectively:

(A.3.43)

and

 . (A.3.44)

Material for the interference is the phase difference

 , (A.3.45)

where  is the flux contained inside the coil. This result is very peculiar. As long
as we only regard the phase difference , then only the overall flux is relevant, not
the specific spatial distribution of the magnetic field which produces this flux. The
flux causes a shift of the maxima and minima of the interference picture on the
screen by the distance

 , (A.3.46)
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which results from (A.3.41) when replacing α by β and x by ∆x. Fig. A.3.2 shows
the interference pattern picture a) without and b) with magnetic field.

Precise measurements show [35], that although the maxima and minima shift
by ∆x as expressed by (A.3.36) and is depicted in Fig. A.3.2, the envelope remains
unchanged, however. This is the result predicted by Bohm and Aharonov and
meanwhile also verified experimentally, most recently and most clearly by [36].
This effect is not explainable by the B field alone. From the perspective of classical
mechanics, the coil should not influence those passing rays (at least under the
condition that the B field of the coil does not overlap with the wave function ,
which is not easy to achieve experimentally and gave rise to many controversies on
the validity of the Bohm-Aharonov effect).

Interesting is also to consider a variation of the experiment of Fig. A.3.2. This
is described by Fig. A.3.3. Here, the coil and its magnetic field is replaced by a
region, carrying a uniform field (perpendicular to the paper plane). The width of
this region is w. Of course, without magnetic field, the result is just as before. With
the magnetic field, we obtain a flux, which is what is relevant here. The flux is
approximately (i.e., if )

(A.3.47)

and the thereby caused shift of the maxima and minima of the interference pattern
is then with (A.3.36)

 . (A.3.48)

Fig. A.3.3 illustrates, just as Fig. A.3.2, the interference pattern a) without and b)
with a magnetic field. However, in contrast to the case of Fig. A.3.2, now the entire
interference pattern, including the envelope, shifts by  in x-direction. This is
plausible and fits well with the classical understanding. For , the Lorentz
force causes

 , (A.3.49)

where  represents the time which it takes for a particle to pass through the region
of the uniform magnetic field. If v is its velocity, then 

 . (A.3.50)

Furthermore, 

 . (A.3.51)

After multiplication by L, this gives exactly the previous result, eq. (A.3.48), which
we have derived there in a rather different way. All electrons are deflected by
exactly the same angle ( ), i.e., the entire interference pattern is shifted by
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the distance . Regarding the sign, we note that for electrons ( ) and for
magnetic fields which point out of the paper plane, the shift is to the right. 

The difference between the two variants of the experiment (namely one where
the coil that has no outside magnetic field, and the other where a uniform magnetic
field is applied), is rather peculiar. Nevertheless, on the basis of Ehrenfest’s
theorems, on one hand, and the phase difference caused by the vector potential on
the other, it should be conceptually clear. In order to determine the root cause of the
maxima and minima, one knows that this only depends on the phase difference, and
this means it solely depends on the enclosed flux ( ). The average of a
particle trajectory is determined by the Lorentz force, and this means the magnetic
induction, whereby the particular form of the Lorentz force given in eq. (A.3.33)
has to be considered. All this is true from a quantum mechanical perspective as
well. Consequently, the center of mass of the particle trajectory remains unchanged
in the case of the coil without fringe field, and therefore, the envelope remains
unchanged as well. In contrast in the case of the uniform field, the electrons are
deflected both, classically and quantum mechanically by the same angle. The
averages shift accordingly. Therefore, in this case, both the envelope and the
interference pattern are shifted by the same distance . This corresponds to a
shift of the center of mass (of the average) by exactly this distance . With this,
we have gained a clear and easily understandable picture of the process. 

An entirely different, nevertheless related experiment (which also goes back
to the mentioned work of Bohm and Aharonov) is sketched in Fig. A.3.4. 

Each of the two rays travels through a shielded cavity in form of a tube 
and , respectively. Then the potentials  and  are applied to the pipes
during the time when the wave packets travel through a tube but are not too close to
the ends (where there may be fringe fields). This creates a phase difference

(A.3.52)

and

(A.3.53)

If , then an interference pattern with maxima and minima corresponding to
the difference 

 (A.3.54)
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is visible at a screen, where as before, eq. (A.3.46) applies. This is as peculiar as
the previous experiment, involving the magnetic field of a coil. Even though inside
the pipes we have

, (A.3.55)

the potential still influences the electrons which pass through it. Similarly to the
previous explanation, it is important to realize that the electric field is not sufficient
to describe the interaction. True also in this case is that the envelope of the
interference pattern (i.e., the “center of mass” of the incident electrons) does not
shift if . Merely the position of the maxima and minima is affected by the
potentials  and . Conversely, when electrons pass through non-
vanishing electric fields, then with shift of the center of mass of the rays, the entire
pattern, including envelope shifts. Both obey the proposition of Ehrenfest’s
theorems.

A.3.6 Conclusions

We have found that quantum mechanics provides a new perspective on the reality
of the fields E and B, on one side, and the potentials A and ϕ on the other.
Maxwell’s equations are thereby unaffected. They can be accepted as correct even
in light of quantum mechanics. However, the interaction of charged particles with
electromagnetic fields exhibits effects which can not be explained classically by
the equation of the motion, and the fields of Maxwell’s equations can not
sufficiently describe these effects. Particularly, the potentials A and ϕ are
indispensable and one needs to consider them as separate fields. It would be easier
to dispense of the classical fields E and B because the potentials are, anyway, a
means within the classical theory to eliminate E and B, while the reverse in
quantum mechanics is not possible, at least not without major difficulties.

A.4 Liénard-Wiechert Potentials
A very interesting, special case of the retarded potentials as of eqs. (7.195) and
(7.196) results, if we consider a charged particle travelling on an arbitrarily
prescribed trajectory . This case is described by:

(A.4.1)

 . (A.4.2)

Q represents the charge of the particle and 

(A.4.3)

is its velocity. The potentials are
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--------------- v0 t( )= =
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(A.4.4)

 . (A.4.5)

Evaluating these integrals is difficult, despite the delta function in there. Its
argument could be a complicated function of , but has to vanish. In general we
have

 , (A.4.6)

where D is the functional determinant

 . (A.4.7)

For the present case, this determinant is

 . (A.4.8)

Using this, we obtain the so-called Liénard-Wiechert Potentials

(A.4.9)

and

 . (A.4.10)

 is defined by the requirement that the argument of the -functions in eqs.
(A.4.4) and (A.4.5) has to vanish, that is, it has to be

 , (A.4.11)
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which means that  is a function of r and t, and depending on the given trajectory
might be difficult to determine.  defines the location where the particle was at the
retarded time. 

A relatively simple, special case is that of a particle which moves with
constant speed. 

 . (A.4.12)

For this case, after some calculations which we skip, one obtains

 , (A.4.13)

 . (A.4.14)

Of course, for the case , the potential has to be

 , (A.4.15)

as i t  is  indeed.  Without  restr ict ing general i ty,  one may assume that
, which results in 

(A.4.16)

(A.4.17)

and for the electric field

(A.4.18)

The ratio is therefore
 , (A.4.19)

that is, the force lines emerge as straight lines from the location , namely
the point where the particle is located at that particular moment. Conversely, the
field is not spherically symmetric. It depends on the angle α, which the force lines
enclose with the x-axis at any particular location of the particle (Fig. A.4.1).
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Using the relation

allows to re-write eq. (A.4.18) in the following way:

 . (A.4.20)

This form makes it obvious that the field lines emerge as straight lines from the
location of the charge. Its magnitude is

 , (A.4.21)

and it clearly reveals the dependency on the angle. The field is minimal for 

 , (A.4.22)

and its maximum is for 

 . (A.4.23)

Let’s pick a specific value for , e.g.: , then 

 .

This field, that depends on the angle was already mentioned in Ch. 1 (Sect. 1.10). 
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We will discuss another interesting example: A particle which oscillates
harmonically about the origin which is described by

, (A.4.24)

 . (A.4.25)

If we let d be very small, then the first order approximation gives

 ,

 ,

and

that is

 , (A.4.26)

 . (A.4.27)

Adding a charge  at rest at the origin gives the overall potential (using
)

(A.4.28)

 . (A.4.29)

These represent the equations for the retarded potentials of the Hertz dipole, eqs.
(7.266) and (7.267), while then the potential was expressed in spherical
coordinates. This result is not surprising. The positive charge, oscillating around a
negative charge at rest represents, in this context, an oscillating dipole. For the
purposes of the radiation, the negative charge at rest is immaterial. The oscillating
particle creates the same radiation as the oscillating dipole does. The difference in
the potential is merely by the potential of the point charge at rest , which
is unrelated to the radiation.
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A.5 The Helmholtz Theorem

A.5.1 Derivation and Interpretation

Helmholtz’s theorem, simplified somewhat, states that an arbitrary vector field can
uniquely be expressed by the totality of its sources and vortices. The easiest way to
conceptualize why this has to be so is by means of a hydrodynamic model.
Consider a finite or infinite volume, within which there is a fluid, initially at rest.
One may add sources, sinks, and generate vortices. These, in conjunction with the
boundary conditions at the surface, will uniquely determine the resulting flux field.

This theorem summarizes many of the properties which we had used in
previous Sections. It also sheds an interesting light on Maxwell’s equations as
such. Their task is to accurately describe two vector fields. In light of Helmholtz’s
theorem, this is best achieved by expressing all of their sources and vortices. This
is exactly what Maxwell’s equations achieve, and they do this in a very simple and
elegant manner. The fields are thereby not independent of each other. They are
correlated by the fact that the time derivative of each one represents the curl of the
other field. 

Consider a vector field W in a finite or infinite volume V with the surface a.
Given are its sources and vortices

(A.5.1)

 . (A.5.2)

 and  are arbitrary densities of sources and vortices. In the electrostatic
case it would be , , and  the charge density. In the magnetostatic
case it would be , , and  the current density. A further assumption
shall be that there are no sources nor vortices at infinity (otherwise, these needed
separate consideration). This allows to express W in the following manner.

(A.5.3)

Introducing the abbreviation  and A for the expression in the brackets, we obtain
 . (A.5.4)

This is Helmholtz’s theorem. Its relation to many results in field theory is apparent.
The proof is easy. It starts from eq. (3.53)

 , (A.5.5)

and in conjunction with eq. (3.56)

(A.5.6)

this gives
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 . (A.5.7)

Applying the vector identity eq. (5.11)
(A.5.8)

gives

 . (A.5.9)

Therefore

(A.5.10)

and

Now applying Gauss’ integral theorem in the form of eq. (5.68) gives

 . (A.5.11)

If we take an infinitely large volume where the location of the sources and
vortices are finite, then all surface integrals vanish. Conversely, for a finite volume,
the surface integrals have to be considered as well. They also have significance
from a plausibility perspective and could have been introduced, even without the
above provided formal prove. We will demonstrate this through an example by
means of the field given in Fig. A.5.1 The field is uniform inside a cylinder and
vanishes outside. Obviously, it must have sources and vortices. Sources and sinks
are generally at locations where the normal component of the field is
discontinuous, and it is rotational at those locations where the tangential field
component is discontinuous. The surface density of the sources is

(A.5.12)

while that of the vortices is
 , (A.5.13)
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where n is the unit vector normal to the surface (pointing outward). This means, the
field in Fig. A.5.1 has sources at the bottom, sinks (negative sources) at the top,
while the vortices are on the sides of the cylinder. If one now considers a volume
that is larger than the cylinder itself, then all those surface sources and surface
vortices are inside this volume and consequently part of the volume integral, where
they appear in the form of δ-functions, which transforms the volume integrals into
surface integrals. We will return to this point in detail in the form of an example. 
There is a relationship between the Helmholtz theorem and the previously proven
theorem (3.57). An irrotational field, that is otherwise arbitrary, can be expressed in
the form of a scalar potential. Then with the current notation one writes

 .

(A.5.14)

Using Helmholtz’s theorem with  gives the same field

 . (A.5.15)

Although the field is uniquely defined by its sources and vortices, still there may be
several ways to express it. The field consists of three parts. The first two are the
same in both representations. The third part can be expressed by a scalar or a vector
potential. We have found in Sect. 3.4.7 that this third part of the scalar potential is
that of a dipole layer. Again, as before in Sect 5.3, one encounters the equivalence
of eddy ring and dipole layer. This means that we can imagine the field to be
created by the surface sources and surface vortices. This equivalence is not as
astonishing as it may seem at first. The vortices are nothing else than the
discontinuity of the tangential components. The boundary conditions (2.117) reveal
that dipole layers, if they are non-uniform, also cause such discontinuities. 

Fig. A.5.1
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A.5.2 Examples

A.5.2.1 Uniform Field inside a Sphere

Consider the field W given in Fig. A.5.2, which is uniform inside the sphere and
vanishes everywhere outside. There are no sources nor vortices inside. Therefore,
the field can be calculated solely from the surface integrals. Using

(A.5.16)

and 
 , (A.5.17)

together with the Helmholtz theorem gives

(A.5.18)

and

(A.5.19)

where

 . (A.5.20)

Note that, as was mentioned frequently, calculation of  should be based on
Cartesian coordinates. This results, as before in eq. (5.44), in the additional factor

 in the integrand. Both integrals are not elementary integrals, however,
the series expansion of the inverse distance in spherical coordinates as Legendre
polynomials allows for evaluation in an elegant way. The general integral is

Fig. A.5.2
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 . (A.5.21)

Using the orthogonality relation (3.300) gives

 . (A.5.22)

The potential for the cases  ( ) and  ( ) becomes

(A.5.23)

and the vector potential is

 . (A.5.24)

The corresponding field inside is
 .

It possesses only a z-component.

 , (A.5.25)

which is created by  from sources and  from vortices. On the outside,
there are only dipole fields which cancel mutually and therefore

 . (A.5.26)

All this should not be surprising. From previous Sections we know, that surface
charge densities proportional to  and current densities at the surface in the
azimuthal direction which are proportional to , cause uniform fields inside
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and dipole fields outside. One corresponds to the electric field of a uniformly
polarized sphere, the other to the magnetic field of a uniformly magnetized sphere. 

By (A.5.14), one can also express the entire field W by means of a scalar
potential alone. In this case, the above vector potential has to be replaced by

 . (A.5.27)

In order to be able to calculate this potential, one has to know the potential at the
surface, which does by no means imply that one can arbitrarily fix this potential.
This would lead to over determination of the problem, as we have discussed in
Sect. 3.4. The purely scalar potential inside, that corresponds to the field of
Fig. A.5.2, has to be

 . (A.5.28)

This gives

 .

With eq. (A.5.22), one can re-write this

 ,

i.e.,

 . (A.5.29)

Combining this with the potential eq. (A.5.23) yields

 , (A.5.30)

which was to be proven.
The just presented example gave us a “hands on experience”, illustrating that,

and how, a field, created by surface vortices can, ad libitum, be expressed by either
the corresponding vector potential or by the potential of the equivalent dipole layer.
Vortices, (i.e. discontinuities of the tangential field component) occur only, if the
dipole layer is inhomogeneous or if the potential under the integral eq. (A.5.27) is
not constant. We know from Sect. 3.4 that the surface density of the dipole moment
is
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 . (A.5.31)

If the boundary coincides with an equipotential surface, then the dipole layer is
uniform and there are no vortices, i.e., the fields must vanish. We will illustrate
this. Consider the very simple field depicted in Fig. A.5.3, which vanishes both,
inside and outside the sphere. The potential shall be constant on the surface of the
sphere:

 . (A.5.32)

This corresponds to the case when in (A.5.14) only the third term is non-vanishing.
Then one gets for the potential

 .

Using (A.5.22) and because of , this results in 

 ,

or

 . (A.5.33)

This again, confirms one of our previous results, namely that of Sect. 2.5.3, eqs.
(2.72) and (2.73) in particular. The potentials are constant and the fields vanish,
just like we had assumed. Nevertheless, inside the dipole layer, there exists an
infinitely strong field, which creates exactly the potential difference C.
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A.5.2.2 Point Charge inside a Conducting Hollow Sphere

Here, we will revisit the problem of a sphere which we have repeatedly discussed
and solved, in Sect. 2.6.1 via the method of images, and in Sect. 3.8.2.3 by the
separation of variables. The sphere shall have a radius of . The potential on the
surface shall be  and the charge shall be on the z-axis at . Then by
(3.336)

 , (A.5.34)

and the radial field at the sphere’s surface is by (3.340)

 . (A.5.35)

The surface of the sphere constitutes an equipotential surface, that is, there are no
tangential components (vortices). 

The Helmholtz theorem under these conditions gives

 . (A.5.36)

The volume integral results with

 (A.5.37)

in the first part of the potential obtained in eq. (A.5.34). On the other hand, the
surface integral, together with (A.5.35) provides the other part of that potential,
which can be shown by means of eq. (A.5.22). This second part is nothing else than
the potential of the image charge. However, in the context of this reflection, notice
that this does not constitute a method to solve the problem. After all, we had to use
the initially unknown field at the surface. Rather, the purpose here was to illustrate
the content of the Helmholtz theorem by means of an example. 

It shall also be noted that only compatible quantities may be substituted into
Helmholtz theorem. In conjunction with the point charge Q, it would be possible to
consider fields different from the one given in (A.5.35), which would constitute a
different problem. In any case, the field prescribed at the surface has to possess a
flux which fits to the totality of all sources. Consider a field with radial components
at the surface of the following form:

 , (A.5.38)

then the total flux created by this field  at the surface is
 . (A.5.39)
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If the total charge inside the volume is Q, then it has to be 

 , (A.5.40)

which determines the first term of the series expansion (A.5.38) and agrees with
(A.5.35).

A.6 Maxwell’s Equations and Relativity

A.6.1 Galilean and Lorentz Transformation

Classical physics as coined by Newton, is based on an understanding which
appears self-evident to us, namely that time and space are absolute realities. The
result of this understanding is the supposition that the laws of physics are invariant
under the so-called Galilean Transformation. Consider a physical process in two
different reference frames, we shall call one Σ and the other Σ’, where Σ’ moves
with a constant velocity  relative to the rest frame Σ. Both are inertial systems,
i.e., there shall be no inertial forces present. We will not discuss the important
implications that come along with this restriction. The relation between the
location vector r and the time t in system Σ on one hand, and the location vector r’
and the time t’ in system Σ’ is as follows

 . (A.6.1)

The coordinate axes of the two systems shall be parallel to each other and they
shall coincide for . The two equations (A.6.1) constitute the so-called
Galilean Transformation. One of its consequences is the familiar addition of
velocities. If a point particle moves with the velocity  in system Σ, then its
velocity in the other system (Σ’) is  and thus

 . (A.6.2)

We had assumed, and this is important here, that the velocity is constant. The
acceleration is therefore the same in both reference frames

 . (A.6.3)

Consequently, if there is a force F, then the equation of the motion is the same in
both frames

 , (A.6.4)

having assumed that the mass is the same in both reference frames (which will not
be the case once we consider relativistic effects). Though simplified and
abbreviated, this is precisely what is meant when saying, that the laws of classical
physics are invariant under the Galilean Transformation. 
After having theoretically derived the speed of the propagation of electromagnetic
waves in vacuum and identified it as the speed of light in vacuum,
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 , (A.6.5)

and then had also proven experimentally that waves really existed (Heinrich Hertz,
1887/88), the question became inevitable, for which reference frame this statement
applied, i.e., in which reference frame does light actually propagate with that
speed. From a classical perspective, there is only one reference frame with this
property. The speed of light according to eq. (A.6.2) is different for all other
reference frames. Initially, it seemed quite natural, yes downright self-evident, to
suppose that this unique reference frame (where the light had the given velocity)
was the surrounding absolute space in which the fixed stars were at rest (not the
earth, however). (From our current knowledge of space, with its vastness and the
incredible dynamic of the behavior of these fixed stars within their spiral nebulas
etc., this was a very naive conception.) In order for waves to propagate in this
absolute space, it was assumed to be filled with a suitable medium, which was
called ether. This ether was to play the same role for light waves as, for example,
gas plays for the propagation of sound waves. Since the earth moves in the ether,
the speed of light as seen from the earth should be different, exactly by its speed
through the ether, which means that eq. (A.6.2) should be applicable. By means of
this equation, it should be possible to determine the speed of the earth within the
ether (and thereby its speed relative to the absolute space). These chains of
reasoning triggered an intensive discussion and hectic experimental activity. Many
experiments were performed with the intention to confirm the just described
understanding (the famous Michelson interference experiment was one of them),
but all failed. The final result shall be presented now without going into further
details of these discussions. The result, which on one hand, is simple, but on the
other, vigorously objects our immediate conception, was first formulated by
Einstein (1905) in this form. It says that the speed of light in vacuum has the same
value in any uniformly moving reference frame (in all inertial systems), regardless
of their speed v, relative to each other. This forms the basis for the theory of special
relativity (not to confuse with the later formulated theory on general relativity,
which is not subject of this discussion). Therefore, Maxwell’s equations are not
Galilei invariant.

The theory of relativity that emerged from this understanding was mandated
by the experimental results and inevitable. It was the compulsory result of the
experimental experience, i.e., it would have emerged, even without Einstein.
Nevertheless, it rightly is connected to his name because he was the first to face the
necessary and inevitable consequences, which required to radically part with our
conception, and he formulated the results of the research of his time, and
furthermore, because he has done this in an ingenious and clear manner.

The theory of relativity has caused discussions, even beyond the realm of
Physics. Many of these discussions were more or less useful, frequently even
bizarre and senseless, sometimes initiated by people who did not even understand
it. Many of the debates, then and now, are distracted by the term relativity, which in

c 1
ε0µ0

---------------=
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a naive way is taken out of context and the theory of relativity is rejected because
of some alleged philosophical reasons by which it is not permissible that
everything is relative. On the other hand, people misuse the theory and claim that
certain statements are relative, i.e., not absolute, even though they are entirely
unrelated to the theory. Feynman has commented on this in an ironic way in his
famous textbook [37, Section 16-1, “Relativity and the Philosophers”]. On the
other hand, let’s note for the record, that Einstein’s theory is ultimately a very clear,
even simple theory, which replaced the theory that preceded it historically (this
preceding theory could be called Galilean theory of relativity). Furthermore, it
shall be noted that Einstein’s theory, by no means contradicts its predecessor but
generalizes it because it includes it as a limit.

The fundamental statement of the theory of relativity is that the quantity

has the same value in every inertial frame, or that

(A.6.6)

is invariant. The mathematical transformation which ensures this, is the so-called
Lorentz transformation. In contrast to the Galilean Transformation, it also includes
the time. Time is now also dependent on the reference frame. To derive this
transformation is not difficult. It only requires the orthogonal transformation of the
coordinates of an n-dimensional space (here four-dimensional), which is well
known in mathematics.

To illustrate the content of eq. (A.6.6), consider an arbitrary point  in the
laboratory frame Σ, from which a spherical wave emerges at time . In the
reference frame Σ’, this wave emerges from the point  at the time . By
suitable translation in space and time, it is always possible to achieve a situation
where , , , and . This does not impose a limit on its
generality.

A.6.2 Lorentz Transformation as an Orthogonal Transformation

Consider an n-dimensional Euclidean space where two Cartesian coordinate
systems coexist, but are rotated against each other. A particular location is
represented in one system by  and in the other by , where

 . (A.6.7)

This transformation must possess the property 
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 , (A.6.8)

that is, the distance must be invariant. This is the case if the matrix operator
(A.6.9)

is orthogonal. Its properties can easily be derived

 .

It is therefore

 . (A.6.10)

Of course we have

 ,
i.e., unity and therefore

 . (A.6.11)

Comparing eqs. (A.6.10) and (A.6.11) yields
 . (A.6.12)

This is exactly what represents the property of the orthogonal transformation
operator, namely that its inverse operator  is equal to its transposed operator 
(where ). Obviously, one also has

 ,

 . (A.6.13)

The two eqs. (A.6.10) and (A.6.13) express that both, the column vectors as well as
the row vectors of an orthogonal operator are unit vectors which are orthogonal to
each other. 

With this mathematical preparation, we now turn our attention to the Lorentz
transformation. For that purpose, as before in eq. (A.6.6), we will use the four-
dimensional vector 

 , (A.6.14)

where now, the four-dimensional distance  has to be invariant. Formally, this

is the same problem as that of a four-dimensional Euclidean space. The difference
is merely that one of the coordinates ( ) and its corresponding matrix
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elements are now complex valued. This is therefore also called pseudo-Euclidean
four-dimensional space-time, which is also called Minkowski space.

Initially, we shall assume that the relative velocity v has only an 
component :

(A.6.15)

This suggests to suppose that  and  remain unchanged in this case,
while only  and  will be changed by the transformation. This
assumption is not necessary but simplifies matters in the following discussion. The
transformation may then be written in the following form:

(A.6.16)

When , then the origin of the moving reference frame Σ’ is at ,
which allows one to write

 .

Thus

 . (A.6.17)

Because of the orthogonality of L, one has
(A.6.18)

(A.6.19)

 . (A.6.20)

Using eqs. (A.6.17) and (A.6.18) gives

 . (A.6.21)

Furthermore, from this and eq. (A.6.20) follows

 ,

and by (A.6.19) this yields

x1
v1

v v1 0 0, ,〈 〉=

y x2= z x3=
x x1= ict x4=

x1' = L11x1   +L14x4

x2' =  x2   

x3' =   x3  

x4' = L41x1   +L44x4










x1 v1t= x' 0=

x1' f v1( ) x1 v1t–( ) f v1( )x1
v1f v1( )

ic
-----------------ict– f v1( )x1

v1f v1( )
ic

-----------------x4–= = =

L14
v1
ic
-----L11– i

v1
c
-----L11= =

L11
2 L14

2+ 1=

L41
2 L44

2+ 1=

L11L41 L14L44+ 0=

L11
1

1
v1

2

c2
-----–

------------------ =        L14

i
v1
c
-----

1
v1

2

c2
-----–

------------------=,

L41
L14
L11
--------L44–

iv1
c

-------L44–= =



A.6   Maxwell’s Equations and Relativity 621

 . (A.6.22)

Introducing the frequently used abbreviation

, (A.6.23)

finally, the Lorentz transformation emerges 

(A.6.24)

or expressed with  and  

 (A.6.25)

One can easily verify that all requirements are met and, in particular, eq. (A.6.6) is
invariant. 

The case of an arbitrary velocity  can be reduced to the just
derived result. For this purpose, decompose  into components parallel and
perpendicular to v,

and obtain
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 .(A.6.26)

Of course, letting  gives the result of our previous transformation
(A.6.25). Also easy to verify is that (A.6.26), indeed, is invariant as required, i.e.

 .
The L operator (when using ) is obtained from (A.6.26) and in the
following form:

 .

(A.6.27)

Its inverse transformation is obtained simply by replacing v by -v. It becomes
immediately obvious that the so obtained inverse matrix is . Letting

 results in the Galilean Transformation. This means that the theory of
relativity includes classical physics in this limit and thereby generalizes it. 

We have, thereby, gained the Lorentz transformation, first in its simple form
of eqs. (A.6.24) or (A.6.25) for  and then in its more complicated
form of eq. (A.6.27) for . Next, we want to consider some of its
fundamental consequences. For the most part, we will use the simpler form, which
is sufficient for many purposes.

A.6.3 Some Consequences of the Lorentz Transformation

A.6.3.1 Lorentz Contraction

Consider a rod, oriented parallel to the  and the  axis, respectively. Its length
in system Σ is . What is its length  in system Σ’? The
task requires caution. One has to ensure that the coordinate points of both ends in
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Σ’ are determined at the same time t’. This needs to be recognized because
simultaneousness in Σ does not imply simultaneousness in Σ’. Therefore, one
requires that , and obtain with  (A.6.25) 

 .

Furthermore

 ,

 . (A.6.28)

From the moving system Σ’, one “observes” the rod shortened by the factor
. This phenomenon is the so-called Lorentz-contraction. The word

observes in the previous sentence was used in quotation marks because caution is
of order when interpreting this result, in order to avoid misconception – which has
frequently occurred.

The Lorentz-contraction causes, for example, that a sphere in motion for an
observer at rest changes to a flattened ellipsoid. However, it does not mean that a
visually observed sphere is seen by an observer as a flattened ellipsoid, nor that a
photographic picture would show a flattened ellipsoid, as it was frequently stated in
the past. This mistake was cleared only relatively late by Penrose [38] and Terrell
[39]. Since the speed of light is finite, visual or photographic observation of an
object gives a distorted picture, because it shows parts with different distances to
the observer at different times. In case of a large distance to the object (or small
solid angle) the object appears in its natural shape and length, but rotated. If the
object is a sphere, then the observer sees a rotated sphere, but not an ellipsoid. If
the object is a rod, then the observer sees a rod with its natural length but rotated.
The angle is such that the rod’s projection onto the direction of the motion
represents the Lorentz-contraction. We pass on a detailed discussion here. Those
details are found in the mentioned publications [38, 39]. It shall be emphasized that
there is no doubt on the reality of the Lorentz contraction. This is a real and
experimentally verified effect. The described facts simply mean that a visual
observation is not a suitable method to experimentally verify the Lorentz
contraction. The fact that a visually observed object, precisely because of the
Lorentz contraction remains visible in its natural shape is very remarkable. The
reason is that the distortion is compensated for by the different optical paths. In this
sense, the theory of relativity restores the “vividness” of objects in motion, which
were otherwise lost due to the finite speed of light.
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A.6.3.2 Time Dilatation

Let an object (e.g. a clock) be located at position , which emits signals at
different times with . Then for system Σ’ one has

 . (A.6.29)

From the perspective of the moving system, the temporal distance appears
expanded by the factor . Therefore, a clock runs slower and slower as it
moves faster and faster. This is the so-called time dilatation. This can be proven
experimentally, e.g., by means of very fast instable particles (radioactive decay),
where its half-life relative to an observer at rest is elongated versus its half-live in
the rest frame. There are so-called µ-mesons contained in high altitude radiation.
They are instable and very clearly show the effect of time dilatation. Time
dilatation is also the root cause of the so-called twin paradox.

A.6.3.3 Relativistic Addition of Velocities

Let a particle in the Σ’ system have the velocity . What is its
velocity in the Σ frame? First, using , gives 

and

 . (A.6.30)

Therefore

 . (A.6.31)

Furthermore

 ,

and with eq. (A.6.30) we obtain

x1
∆t t2 t1–=

∆t' t2' t1'–
t2

v1

c2
-----x1– 

  t1
v1

c2
-----x1– 

 –

1 β2–
-----------------------------------------------------------

t2 t1–

1 β2–
------------------- ∆t

1 β2–
-------------------= = = =

  ∆t' ∆t
1 β2–

-------------------  =

1 1 β2–⁄

u' u1' u2' u3', ,〈 〉=
β v c⁄ v1 c⁄= =

u1
dx1
dt

--------

dx1'
dt'

--------- v1+

1 β2–
--------------------- dt'

dt
-----⋅= =

dt'
dt
-----

1
v1u1

c2
----------–

1 β2–
-------------------- 1 β2–

1
v1u1'

c2
------------+

---------------------= =

   u1
u1' v1+

1
v1u1'

c2
------------+

--------------------- ,          u1'
u1 v1–

1
v1u1'

c2
------------–

---------------------   ==

u2
dx2
dt

--------
dx2'
dt'

--------- dt'
dt
-----⋅ u2'

dt'
dt
-----   ,= = = u3 u3'

dt'
dt
-----=



A.6   Maxwell’s Equations and Relativity 625

 . (A.6.32)

Eqs. (A.6.31) and (A.6.32) represent the relativistic theorem for addition of
velocities, which for small velocities ( ) reduces to the classical vector
addition ( ). 

Consider a few special cases: For  one has also .

I f  ,  t h e n  ,  w h e r e

 and thus  . Next, more general, let

then 

 , (A.6.33)

where 

 . (A.6.34)

Whereby

and
 . (A.6.35)

This means that an object (for example. light), moving with the speed of light, has
the same speed in every reference frame. This is, of course, necessary and was the
starting point of our reflections (Sect. 6.1). Nevertheless, the direction of the
motion (that is the propagation direction of e.g. light) depends on the reference
frame. This is the so-called aberration (of light), which is described by the
relations (A.6.34).
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For , the velocity  is independent of u’. This also is an
immediate and plausible consequence of the invariance of the speed of light.

A.6.3.4  Aberration and Doppler Effect

Consider a moving, point-like light source from which a spherical wave emerges
(Fig. A.6.1). At point P, an observer in the rest frame Σ sees it at the angle α, while
an observer moving with the light source (reference frame Σ’) sees the source at the
angle α’. The quantities measured then in Σ have the phase factor

and in Σ’, the phase factor is

 .

These have to be compatible with the Lorentz transformation and mutually
transform into each other. This requires that

 

By comparing coefficients of t we find

(A.6.36)

that is, the angular frequency ω depends on the reference system.
This represents the so-called relativistic Doppler effect. Comparing coefficients of

 and , while also considering (A.6.36), results in eq. (A.6.34), i.e. the
aberration of light.
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These results amount to the phase  being relativistically invariant,
to which we will return in Sect. A.6.5.2.

A.6.4 Lorentz Transformation of Maxwell’s equations

The experiments mentioned in Sect. A.6.1 to determine the speed of the earth
within the absolute space (ether) had to fail, because electromagnetic waves in
vacuum propagate in all inertial systems with the same speed, the vacuum-speed of
light c. Ultimately, the reason for this is that the Maxwell equations are not Galilei
invariant, but Lorentz invariant, which was only revealed by, and understood in
light of Einstein’s theory of relativity. Today, we are able to realize that Maxwell’s
equations were, and still have to be, the starting point for relativity and, even
though it was not apparent when Maxwell stated them, his equations always
contained relativity. This is the reason why it is so important to show that the
Maxwell equations are indeed Lorentz invariant, that is, that these equations apply
unchanged in all inertial reference frames, as long as the field quantities (i.e. the
components of E and B) are transformed in a suitable manner.

To show this, we consider the two reference frames Σ and Σ’. In Σ we have
the coordinates r, t and the fields E(r,t), B(r,t), in Σ’ we have the coordinates r’, t’
and the fields E’(r’,t’), B’(r’,t’). We limit our examination to free space. Later we
will apply a generally applicable formalism which allows in an elegant way to treat
the general Maxwell equations. For the frame Σ, Maxwell’s equations apply in the
following form

 . (A.6.37)

The transformation of r, t by the Lorentz transformation to r’, t’ is not difficult but
tedious and therefore skipped here (this calculation can be found e.g. in Simonyi
[40]) and results again in Maxwell’s equations, 

 . (A.6.38)

The transformation of the field components is as follows:
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 . (A.6.39)

When using , this can be written in a more elegant form

 . (A.6.40)

Only the field components perpendicular to the velocity v change, while the
parallel ones remain unchanged. This is just the reverse from what was found for
the components of the location vector. This is no accident, as we shall see more
clearly. The nabla symbols for curl and divergence have a prime as a
reminder that E’ and B’ are functions of r’, t’, and therefore the derivative in eqs.
(A.6.38) is with respect to . Conversely, eqs. (A.6.40) are
independent of any particular coordinate system and apply for arbitrary velocities

. 
The force on a particle in system Σ is f, and f ’ in system Σ’

 . (A.6.41)

This means that the forces on a particle have the same form in every reference
frame, i.e., they are calculated within their respective reference frame from the
electric and magnetic fields in the same way. Nevertheless . The equations
for the transformation of f will be provided in Sect. A.6.5.2, eq. (A.6.72), which
incidentally, can be used to derive the equations for the transformation of the
electromagnetic fields. The charge Q is scalar, i.e., is not transformed, which
means that . Remarkable and easy to verify is also that the two following
quantities are Lorentz invariant:

 . (A.6.42)

The reader shall be reminded of Sect. 6.1.2 and particularly eq. (6.6). Comparison
with A.6.40 reveals that there, if we consider that E is the electric field in the
moving frame, we had applied the non-relativistic approximation, i.e. the
approximation for velocities . 
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Furthermore, the reader shall be reminded of Appendix A.4. There, we have
introduced to the Liénard-Wiechert potentials and calculated the problem of a
uniformly moving charge as a specific example. Within the moving frame, the
particle exhibits exclusively an electric Coulomb field and no magnetic field. The
just provided transformation allows one to obtain the electric and the magnetic
field, as experienced by the observer at rest. Carrying out the transformation yields
precisely the field obtained in Appendix A.4, which demonstrates the fact that
Maxwell’s equations automatically provide the relativistically correct result. This
result is limited to the special case of constant velocities because the Lorentz
transformation is valid only for inertial systems, but not for accelerated reference
frames. We will return in Sect. A.6.6.4 to the discussion of a charge of uniform
velocity.

We will carry out the transformation of the fields in a more systematic and
more elegant manner. Thereby, it will be revealed that the field components are
simply components of an anti-symmetric four-dimensional tensor of rank two
(which possesses just six independent components). From this follows immediately
how to transform the field components. Moreover, this tensor allows one to express
Maxwell’s equations in a particularly compact and elegant form, which
furthermore, makes its Lorentz invariance instantly plausible. This requires to
occupy ourselves with the four-dimensional vectors of the Minkowski space (the
so-called 4-vectors) and their corresponding Four-tensors, i.e., the tensor products
of the 4-vectors.

A.6.5 4-Vectors and 4-Tensors

A.6.5.1 Definitions

When changing the reference frame of a 4-vector
 , (A.6.43)

where the fourth component is , then the Lorentz transform 
(A.6.44)

is applied and it holds that 

 . (A.6.45)

Generally, only vectors that transform in this manner are called 4-vectors

 . (A.6.46)

Quantities which transform like multiple products of the components of 4-vectors
are called tensors of the respective rank. The expressions
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 , (A.6.47)

 , (A.6.48)

represent a tensor of rank 2, rank 3, etc. In this sense, a 4-vector is a tensor of rank
1. A scalar quantity is a tensor of rank zero, for which 

 . (A.6.49)

The scalar product (corresponding to the summation over a common index, which
is also referred to as rank reduction) reduces the rank of the tensor by one each
time. The scalar product of two 4-vectors  represents an invariant scalar
quantity. The scalar product of a 4-vector and a 4-tensor of rank two 
yields a 4-vector, etc.

The coefficients of the Lorentz transform for  are given by
(A.6.24) and by (A.6.27) for .

A.6.5.2 Some Important 4-Vectors

An important vector in the three-dimensional space is the -vector. In the four-
dimensional space it becomes a 4-vector:

 , (A.6.50)

Now, we explore the continuity equation (1.58) in this context

 ,

which is nothing else than the four-dimensional divergence of the 4-vector of the
current density or short 4-current density

 . (A.6.51)

It is a very remarkable and consequential result that the three components of the
current density, together with icρ (that is the volume charge density, for the most
part) form a 4-vector. That this is true, can be shown on one hand, but is also a
result of the fact that the divergence of the 4-vector vanishes, i.e. it is invariant. 

The Lorentz gauge (eq. (7.186)) represents a four-dimensional divergence

 . (A.6.52)

bik
 ' LilLkmblm

m 1=

4
∑

l 1=

4
∑=

cikl
 ' LimLknLlpcmnp

p 1=

4
∑

n 1=

4
∑

m 1=

4
∑=

d d '=

aibi
i 1=

4
∑

aibik
i 1=

4
∑

v v1 0 0, ,〈 〉=
v v1 v2 v2, ,〈 〉=

∇

  ∇ ∂
∂x1
-------- ∂

∂x2
-------- ∂

∂x3
-------- ∂

∂x4
--------, , ,〈 〉 ∂

∂x1
-------- ∂

∂x2
-------- ∂

∂x3
-------- 1

ic
---- ∂

∂t
----, , ,〈 〉    = =

∇ g ∂ρ
∂t
------+• ∂

∂x1
--------gx1

∂
∂x2
--------gx2

∂
∂x3
--------gx3

1
ic
---- ∂

∂t
---- icρ( )+ + + 0= =

   g icρ,〈 〉 gx1 gx2 gx3 icρ, , ,〈 〉    =

A∇• µ0ε0 t∂
∂ϕ+ A∇• 1

c2
-----

t∂
∂ϕ+=

                    ∂
∂x1
--------Ax1

∂
∂x2
--------Ax2

∂
∂x3
--------Ax3

1
ic
---- ∂

∂t
---- icϕ

c2
-------- 

 + + + 0= =



A.6   Maxwell’s Equations and Relativity 631

This brings to light the fact, that the vector potential, together with 
as its fourth component forms a 4-potential,

 . (A.6.53)

The scalar product of the four-dimensional -vector with itself yields the four-
dimensional analogue to the Laplacian

 . (A.6.54)

This scalar operator is the d'Alembertian and frequently represented by the square
symbol . This allows to combine the two inhomogeneous wave equations
(7.187) and (7.188) into a single equation:

 . (A.6.55)

This represents the four-dimensional inhomogeneous wave equation for the 4-
potential with the 4-current density as its inhomogeneity. It illustrates in a simple
way that here we have Lorentz-invariant equations. 

The Lorentz gauge resulted in a four-dimensional divergence, which means it
is Lorentz invariant. This poses an advantage over other gauges which are not
Lorentz invariant. 

Another important 4-vector, particularly for mechanical applications, is the 4-
momentum. Consider a particle in the reference frame Σ with the rest mass  and
the velocity . u is used to distinguish the particle velocity from
the relative velocity v of the two reference frames Σ and Σ’. We assign the
momentum vector 

(A.6.56)

to the particle in system Σ. For the reference frame Σ’, the vector shall be 

 . (A.6.57)

The relation between u and u’ is given by eqs. (A.6.31) and (A.6.32), which allow
to derive the interesting and oftentimes useful relation

 . (A.6.58)
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. (A.6.59)

We continue by introducing the masses m and m’, as well as the energies W and W’
in the frames Σ and Σ’, respectively. 

 , (A.6.60)

with the relation 

 . (A.6.61)

Comparison of eqs. (A.6.59) and (A.6.61) with (A.6.24) reveals that the vector

(A.6.62)

is a 4-vector. We call it the 4-momentum. The quantity m is the velocity dependent
mass, which depends on the reference frame, along with the speed u of the particle.
W is the particle’s energy, which also depends on the reference frame. Eq. (A.6.60)
contains the famous Einstein relation between mass and energy ( ) and
the known relation between  and . Now, the background and the reasons for
these relations becomes apparent, which rest in the fact that the vector (A.6.62) is a
4-vector. For very small velocities u, its three spatial components give the classical
momentum , which justifies the name 4-momentum.
The rest mass  is invariant, the just defined velocity dependent mass is not,
however. Dividing the 4-momentum by  gives another 4-vector, the so-called 4-
velocity
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 . (A.6.63)

Conversely, dividing the 4-momentum by m gives another vector (u,ic), but this is
not a 4-vector. The velocity u can not be regarded as part of a 4-vector. Eqs.
(A.6.31) and (A.6.32) also reveal that u transforms rather differently than the
spatial part of the 4-vector. Only the factor creates a 4-vector.
The absolute value of the 4-momentum is invariant, of course,

 .

 for  and we obtain

.

Rearranging reveals the important relation which we have used before, eq. (A.1.7):
 . (A.6.64)

When specifically considering electromagnetic radiation, one finds that it also
possesses momentum and energy, where both are proportional to each other.
Expressing both for a light quantum (which is not necessary to do), we get

(A.6.65)

and the 4-vector of the momentum becomes

 . (A.6.66)

Consequently,

(A.6.67)

is a 4-vector whose fourth component is, essentially, the angular frequency. We
might call it the 4-vector of the wave number whose scalar product is invariant
with the 4-vector of the location. 

 . (A.6.68)

This invariance is nothing else than the phase, whose invariance we have already
noted in A.6.3.4. Furthermore:

 . (A.6.69)

We obtain the dispersion relation, which is of course invariant as well.
Another 4-vector is the 4-force
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 . (A.6.70)

W is the particle energy, introduced with eq (A.6.60) and f the 3-force. With this,
we have the relativistic equation of the motion 

 . (A.6.71)

Note that f does not represent the spatial part of the 4-force and does not transform
like that. Rather, it results in (see e.g. [45], p 296ff):

(A.6.72)

This transformation allows for a very remarkable rearrangement

 . (A.6.73)

Suppose e.g. that , then the transformed force f’ contains the Lorentz
force in the form of the customary vector product . However, any other
arbitrary force results in a force analogous to the Lorentz force.

Finally, the 4-acceleration shall be mentioned as well:

 . (A.6.74)
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acceleration. The transformation of b yields (see e.g., [45], p 296)

   F    1

1 u2

c2
-----–

------------------ f i
c
--dW

dt
-------,〈 〉    =

 f d
dt
----

m0u

1 u2

c2
-----–

-------------------=

fx'  fx
vuy'

c2 1 β2–
------------------------ fy–

vuz'

c2 1 β2–
------------------------ fz–  fx

vuy

c2 1
vux

c2
-------– 

 
---------------------------- fy–

vuz

c2 1
vux

c2
-------– 

 
---------------------------- fz–= =

fy'
1

vux'

c2
---------+

1 β2–
------------------- fy

1 β2–

1
vux

c2
--------–

------------------ fy   ;   = =  fz'
1

vux'

c2
---------+

1 β2–
------------------ fz

1 β2–

1
vux

c2
--------–

------------------ fz= =















   f '

 f x'

 f y'

 f z'

 f x

 f y 1 β2–( )⁄

 f z 1 β2–( )⁄

ux'

uy'

uz'

0
 f z

 f y–

v
c2 1 β2–
------------------------×+= =

 f QE=
Qu B×

   1

1 u2

c2
-----–

------------------ d
dt
---- u ic,〈 〉

1 u2

c2
-----–

------------------   ⋅

b du
dt
------=



A.6   Maxwell’s Equations and Relativity 635

(A.6.75)

These equations for the transformation of b contain a portion that is in the form of
a vector product, similarly to eqs. (A.6.73) for  f  before. 

Clearly, for , it is both,  and . 
If the force f can be expressed by a potential, i.e., can be expressed by the

potential energy U, then 
 (A.6.76)

and the equation of the motion takes the following form

 . (A.6.77)
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and

 , (A.6.78)

that is, , the sum of potential and kinetic energy, including rest energy of
the particle  is a conserved quantity. This represents a relativistic
generalization of the related theorem of classical mechanics, which results when
the velocities approach zero:

 . (A.6.79)

A.6.5.3 Field Tensor F

The 4-potential allows to calculate all components of B and E.

(A.6.80)

All these quantities are formally calculated like the components of the curl of a
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there are six such components, which sometimes are called a “6-vector”. In a sense,
this represents the curl of a vector in the four-dimensional space. Nevertheless, in
mathematical terms, this is a tensor of rank 2, a so-called field tensor with the
components 

 . (A.6.81)

Each of the two terms in this summation, individually embodies a tensor of rank 2
in the sense of (A.6.47), i.e., it constitutes a tensor product of the four-dimensional

-vector and the 4-potential. The field tensor is anti-symmetric and its
components have the following property:

 , (A.6.82)

namely, it has six independent components, which by (A.6.80), essentially, are just
the components of E and B 

 . (A.6.83)

It is obvious, even without further calculation, how the field components
transform, namely as of (A.6.47). For the simple case of , we obtain
the same result as eqs. (A.6.39) and (A.6.40), respectively, which can easily be
verified by substitution.

Strictly speaking, the components of the curl of a three-dimensional vector
(as well as the vector product of two vectors) are also the components of an anti-
symmetric tensor of rank 2. 

Next we take Maxwell’s equations
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and reformulate them by means of F. When substituting the respective tensor
components of (A.6.83) into (A.6.84), then from the third and the fourth equation
we obtain 

These four equations can be combined into a single equation

(A.6.85)

where  represent the number sequences , , , or
, (that is, they are three different numbers out of the range 1 .. 4 in cyclical

arrangement). The first two equations of (A.6.84) yield

 . (A.6.86)

The components of the first equation are obtained for , while for 
one gets the components of the second equation. As for eq. (A.6.85), this represents
a tensor of rank 3. Eq. (A.6.86) is a vector equation. The term on the left originates
from the field tensor by taking the divergence (namely, by the scalar product with
the four-dimensional -vector). This constitutes a reduction of the tensor’s rank
by one and thus creates a vector out of the field tensor (rank 2). The vector on the
right side is essentially the 4-current density.

Both, eq. (A.6.85) and (A.6.86) provide a representation of Maxwell’s
equations that is very elegant, and immediately reveals their Lorentz invariance.
However, this form is also very abstract and due to its unfamiliarity, it has lost the
conceptual clarity of the customary form of Maxwell’s equations. Both forms are
entirely equivalent. One is advised to employ both, depending on the type of
problem to be solved.

The purpose of this Appendix is not to generalize and re-write the entire field
theory in a relativistic form. This has been done by various authors which are listed
for further reference [40 - 51]. Here, we will limit ourselves to a few simple
problems with the intent to further clarify the terminology and their
interdependence. 
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A.6.6 Examples

A.6.6.1 Surface Charges and their Fields

Consider two infinite, parallel planes carrying the uniform surface charge 
(Fig. A.6.2). This causes a uniform field between the planes with the magnitude

. Now we observe the situation from within a reference frame Σ’,
which moves with the constant velocity v in the direction parallel to the -axis.
The question is now, what field  is observed from within the moving frame?

First, we note that the entire charge inside a volume is relativistically
invariant. This is a well verified, a very important, and a seemingly trivial result.
Nevertheless, charge densities are not invariant, which can also be seen from the
fact that it occurs as the fourth component of a 4-vector. Applying the Lorentz
transformation (A.6.24) to (A.6.51) for  gives

 . (A.6.87)

Focusing on the surface elements of the charged plane (Fig. A.6.2), we find that the
charge of such a surface element is invariant. From the moving system’s
perspective, a surface element is shortened in the direction of the motion due to the
Lorentz contraction by a factor . The surface charge density is
therefore increased by the same factor

 , (A.6.88)

which can easily be found by taking the limit of (A.6.87). Both equations, (A.6.87)
and (A.6.88) can therefore be apprehended conceptually as a consequence of the
Lorentz contraction. Naturally, along with increasing  goes an increase of 
by the same factor
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 , (A.6.89)

which conforms with the transformation equations (A.6.39) and (A.6.40), as
. From the perspective of system Σ’, the moving surface charges correspond

to surface current densities. Calculating their magnetic field  yields 

 . (A.6.90)

which agrees with eqs. (A.6.39) and (A.6.40). Of course, all fields vanish in the
outside space.

Next, we repeat the analysis for the situation depicted in Fig. A.6.3. Now the
charged surfaces are perpendicular to v, and therefore

(A.6.91)

and
 , (A.6.92)

whereby eq. (A.6.92) also agrees with (A.6.39) and (A.6.40).
Furthermore, (A.6.87) applies as well. Nonetheless, the applicable equation

for  is (A.6.91) but not (A.6.88). The reason is that the surface charge is obtained
as the limit of a layer with finite extend. 

 . (A.6.93)

The moving charges cause currents in the Σ’ frame, but for symmetry reasons,
these do not cause a magnetic field. Similarly, the equations of the transformation
do not yield a magnetic field because of . Instead of the fields, one might
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 . (A.6.94)

We have realized already in Sect. (A.6.4) that the component of the location
vector which is parallel to the relative velocity u changes, while the component
perpendicular to it remains unchanged, and that this behavior is reversed for the
field components.

A.6.6.2 Currents and Volume Charges

If the 4-vector of the current density in the rest frame Σ is , then for
the reference frame Σ’ we have

 . (A.6.95)

Even if , it still is , namely

 . (A.6.96)

This might come as a surprise at first, but can be explained quite well on a
conceptual level. As an example, Fig. A.6.4 depicts a metallic conductor. From the
perspective of the rest frame Σ, it contains ions and electrons with the volume
charge densities  and . The electrons travel in negative -direction with
the velocity . The total charge density is . The question is now what
is the perspective of an observer in a reference frame that moves with velocity v in
the positive -direction? First, the volume charge density of the electrons in their
own reference frame (within which they are at rest) is
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 .

The velocity of the observer relative to the rest system of the electrons is given by
eq. (A.6.31) as 

 .

Therefore, in the reference frame Σ’ of the moving observer we have for the
electrons

 .

The volume charge density for the ions is

 .

This makes the total charge density in the moving system Σ’ 

 ,

which agrees with (A.6.96). For  one finds:
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 , (A.6.97)

which agrees with (A.6.95) for . Of course, the magnitude of the current
density 4-vector is invariant, i.e., for  we have

 . (A.6.98)

A.6.6.3 Force of a Current on a moving Charge

If, instead, we replace the observer who moves with velocity v, by a charged
particle, then a force is exerted on this particle. In the system where the conductor
is at rest, this is caused by its magnetic field in the form of the Lorentz force. Now,
there is no electric force because of . Conversely, there exists no Lorentz
force in the reference frame where the charged particle is at rest. Instead, now there
exist an electric field which is created by the volume charges and which exerts a
force on the particle. This electric field is purely radial

 . (A.6.99)

 is the radius of the conductor and  its cross-sectional area. Using  from
eq. (A.6.96) gives

 . (A.6.100)

I represents the current in the rest sytem of the conductor. This results in

 , (A.6.101)

which is nothing else than the azimuthal component of the conductor’s magnetic
field in the rest system. Therefore

(A.6.102)
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that is, we obtain exactly the same field as we would get when transforming the
fields according to eqs. (A.6.39) and (A.6.40). The transformed magnetic field is
explained by the current density when transformed according to (A.6.97).

These examples illustrated that the seemingly peculiar phenomena of the
theory of relativity are not as implausible as they appear at first. Based only on the
assumption of the Lorentz contraction and the relativistic addition of velocities, we
were able to derive everything else in a conceptually clear manner. This
demonstrates that the Lorentz force is, basically, also an electrical force which is
caused by relativistic effects. Fundamentally, the magnetic field is not necessary.
Nevertheless, our example has shown that the introduction of the magnetic field is
useful and description of the relations is thereby tremendously simplified. The
calculation without the magnetic field required to first find the force on the particle
in its rest frame and subsequently transform this force into the given reference
frame.

A.6.6.4 Field of a Uniformly Moving Point Charge

We have presented the Liénard-Wiechert Potentials in Sect. A.4, and as a special
case thereof, those of a uniformly moving point charge. 

Oftent imes,  applying re la t iv i ty  s impl i f ies  the  process  to  solve
electromagnetic problems tremendously. For this purpose, one first solves the
problem in a reference frame which makes the problem particularly simple. Then,
that solution is transformed into the given reference frame. Eqs. (A.4.16) and
(A.4.17) of Section A.4 represent the potentials for the field of a charge moving
parallel to the x-axis with velocity .
The potentials in the moving reference frame Σ’ are

 . (A.6.103)

The 4-potential in Σ’ is therefore

 .

Using the Lorentz operator L as of (A.6.27) gives for the 4-potential in Σ 
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---------------------------------------------------, , ,〈 〉



A.6   Maxwell’s Equations and Relativity 645

 ,

i.e., 

. (A.6.104)

When replacing x‘, y‘, and z‘ by x, y, and z according to eq. (A.6.25), then after
some simple calculations, one obtains just the potentials of eqs. (A.4.16) and
(A.4.17), as is has to be. This way of solving the problem is indeed much simpler
than it was before. We learn that it can be beneficial to determine which choice of a
particular reference frame simplifies the solution of the problem. Furthermore, this
proceeding fosters a deeper understanding of a problem and its solution. 

A.6.7 Final Remarks

It was not the objective of this Appendix to present a detailed treatment of the
entire theory of relativity. Nevertheless, because it has emerged from the
electromagnetic field theory as a mandatory consequence, and conversely, the
electromagnetic field theory can only be understood completely in light of the
theory of relativity, this Appendix’s intention was to foster a deeper understanding.
It became clear at many occasions throughout the book, that relativity emerges
frequently and its understanding is necessary to comprehend the topic at hand. 

In closing, Sommerfeld shall be quoted. At the beginning of the Section on
the four-dimensional formulation of Maxwell’s equations, he states: “I wish to
create the impression in my audience that the true mathematical form of those
constructs unfolds only now, just like a mountain view when the fog breaks open”
[40, p 197]. A little later: “From the point of view of Maxwell’s equations, the
theory of relativity is self evident. Simply from the form of Maxwell’s equations, a
mathematician, whose eyes were trained by Klein in the Erlanger program, should
have been able to see and read out its transformation group, including all of its
kinematical and optical consequences” [40, p 200]. These statements do by no
means limit Einstein’s extraordinary accomplishments. However, there can be no
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doubt, that if relativity were wrong, along with relativity, Maxwell’s equations had
to be disposed of as well. Expressed differently, the convincing proofs for the
validity of Maxwell’s equations by numerous, different experiments, carried out
independently from each other, provide an equally convincing testimony for the
validity of the theory of relativity.
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Index 

Numeric
13-point formula 544
4-acceleration 634
4-current density 630
4-force 634
4-momentum 631
4-potential 631
4-tensor 629, 630
4-vector 629
4-velocity 632
4-wave number 633
6-vector 637
7 point formula 542
9-point formula 547

A
aberration 625, 626
absolute space 617, 627
absolute time 616
absolute value of a complex number 212
AC generator 347
action at a distance 593, 594
advanced solution 446
age of the universe 584–585
Aharonov-Bohm 262, 573, 593–602
Alvarez method 592
Ampere 35

-absolute 36
-definition 36
-international 36
-Law 25

Ampere's molecular currents 294
Ampere’s law 25, 27, 272, 335
Ampère’s molecular currents 29
analytic function 212, 216–219
angle preservation 215–216
angular distribution of dipole radiation

461
angular frequency 412

-dimensionless 377
angular momentum 586, 590
angular velocity 18
antenna gain 463, 465
Apollonius

-circles of 81, 223

Apollonius, circles of 560
area element 121
argument

-ikr of Bessel functions 167
-of a complex number 215
-of the delta-function 135

associated Legendre functions 189–190
-of 1st, 2nd kind 189

B
basic units 35
basis functions 161, 367, 529
battery 234
Bessel differential equation 166, 391
Bessel function 166, 393, 488, 496

-modified 167
-first kind 167
-second kind 167

Biot-Savart’s law 260–265, 267, 284,
457

Bohm-Aharonov 262, 573, 593–602
Bohm-Aharonov effect 601
Bohm-Aharonov experiment 263
Bosons 570
bound charge 87
bound magnetic charge 297
boundary conditions

-Dirichlet 128, 244, 508, 509, 512, 518,
519

-essential 518
-mixed 509
-natural 518
-Neumann 244, 508, 509, 518, 519

boundary element method 510, 537, 556,
559, 562, 563

-direct or indirect 557
boundary region formulas 543
boundary value problems 357
branch point 221
Brewster angel, 437
bulk-magnetization theory 290

C
canonical momentum 595

-coordinates 594
capacitance coefficients 204
capacitance of capacitors 39, 81, 83, 576
Capacitor 81
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capacitor 81, 84
-cylindrical 83
-plane 89, 575
-with plane, parallel plates 81

Cauchy-Riemann condition 250
Cauchy-Riemann differential equations

207, 209, 212, 216
characteristic impedance 410
charge

-bound 61
-bound electric 87
-electric 2
-fictitious magnetic 286
-free 87
-magnetic 23
-moving 29, 603

charge distribution
-cylindrically symmetric 48
-one-dimensional, plane 44
-rotational symmetric 54

charge quantity 3
charges

-fictitious magnetic 291, 296, 308, 319,
319–320

circles, of Apollonius 81, 223
circular current loop 283
circular cylinder 105
circulation, see curl
closure relation, see completeness rela-

tion 146
coaxial cable 337, 472, 486, 490
coercive force 300
coercivity 300
coil 272, 338, 342

-toroidal 274
collocation

-overdetermined 529–532, 536, 562
collocation method 529, 536, 562
commutator 347
completeness relation 146, 160, 162,

179, 513
complex conjugate 211
complex number 210, 211, 215
complex potential 217
Compton wave length 570
condition of outward radiation 446
conductance 251, 494
conductivity

-magnetic 304
-specific electric 32, 232
-unit of 235

conductor 23, 72
confocal 214
conformal 227, 269
conformal mapping 210
constant element 558
constants of separation 140
constitutive relations 32
continuity equation 27, 232, 478
convolution integral 362
convolution theorem 362, 371, 385, 386,

393, 397
coordinate system

-cartesian 125
-cylindrical 125
-orthogonal 120
-spherical 127
-unit vectors 124

coordinate transformation 117
coordinates

-curvilinear 120
-of the elliptical cylinder 229
-of the parabolic cylinder 214

coplanar 432
cos integral, see cosine Fourier integral
cosine Fourier integral 158
Coulomb 38
Coulomb field 571, 575, 629
Coulomb gauge 257, 260, 443
Coulomb potential 47, 507, 571

-shielded 47, 48
Coulomb’s law 2–4, 9, 28, 35, 38, 40,

569, 575, 593
-for electric charges 586
-for magnetic charges 289, 586

critical angle of total reflection 439
critical wave length 477, 479, 490
cross section

-multiply connected 472
-simply connected 471

curl 14, 123
current density 23, 444
current density field, stationary 232
current density lines 325
current loop 329
current, electric 23



Index D 651

cutoff frequency 477, 581
cylinder functions 166–167, 169, 324,

492
cylinder, elliptical 105
cylindrical capacitor 83

-eccentric 224
cylindrical case 71

D
d’Alembert’s solution 407, 414, 446
damping constant 427
de Broglie relation 599
Debye-Hückel field 571
Debye-Hückel potential 571
de-electrification 105
de-electrification factor 308

-ellipsoid 106
defining property of the delta function

134, 367
degeneration 496
del operator, see Nabla
delta function 47, 134, 367

-filtering 134, 367
-sifting property 134, 367

demagnetizing factor 106
diamagnetic 293
dielectric constant 86

-in free space or vacuum 4
dielectrics 72, 84, 88, 95, 115, 486
difference equations 539
differentiable

-uniquely of a complex function 212
diffusion 354
diffusion equation 354–359, 364, 381,

390, 403, 498, 539, 548, 566
diffusion equation vector 354
diffusion problem 365, 402, 556

-cylindrical 389
diffusion time 358
dimensionless quantities 502
Dini series 393
dipole 198

-distribution 60
-ideal electric 57
-ideal, electric 61
-oscillating electric 588
-oscillating magnetic 588

dipole antenna 463

dipole current density 244, 262
dipole field

-electric 56, 58
dipole layer 63

-cylindrical 70
dipole moment 509, 558, 578

-density 454
-electric 56, 57–70, 84–88, 97, 103
-magnetic 279, 290, 293
-oscillating electrical 454
-per unit length 70
-permanent 450
-surface density 63
-surface density, magnetic 282

dipole source 244
Dirac’s delta function, see delta function
Dirichlet’s boundary value problem 128
discrete spectrum 161
dispersion relation 413, 421, 423, 423–

428, 432, 442, 468, 475, 476, 488,
489, 495, 503

displacement
-electric 5, 38, 40, 64, 86–87

displacement current density 28
distributions 132
divergence 9–12, 18, 104, 121
domain decomposition method 549
Doppler effect 626

-relativistic 626
double layer (see also dipole layer) 63,

509
double slit 599
dual transformation 587–593
dyadic product 160

-undetermined 160

E
E wave 420
earth, a large resonant cavity 583
eccentric cylindrical capacitor 224
eddy currents 357
Ehrenfest’s Theorems 597
eigenfrequency 483
eigenfunction 496–498, 524
eigenvalue 143, 161, 178, 483, 496, 524
eigenvalue equation 525
eigenvalue spectrum 182
Einstein 617



652 Index F

Einstein relation between mass and ener-
gy 632

electret 85
electric displacement 5, 38, 40, 64, 86–87
electric field 4

-complex 218
-impressed 234
-of a moving charge 28

electric field strength see electric field
electric flux 5
electromagnet 302
electromagnetism 1
electromotive force 234
electronvolt 39
electrostatics 34, 40
element matrix 555
elementary charge 37
elementary current theory 290
elementary particles 286, 293
elliptical cylinder 105

-coordinates
-of 229

energy
-electromagnetic 110
-electrostatic 111–113
-magnetic 335–339
-of a capacitor 115
-operator of kinetic 569
-operator of total 569
-potential 21, 569

energy density
-electric 110
-magnetic 110

energy flux 110
energy flux density 109
energy principle

-of electrodynamics 108
-of electrostatics 108

energy theorem
-in operator form 569

energy transfer 413, 422
entropy theorem 354
equation

-elliptic 356
-homogeneous 332
-hyperbolic 356
-inhomogeneous 367
-parabolic 356

equation of motion 21, 593, 593–597,
616

-relativistic 634
equipotential surface 21, 53, 54, 72, 73,

74, 75, 81, 177, 223
equivalence of eddy ring and dipole layer

290
error function 372

-complement 372
error squares, see least squares error
essential singularity 363
ether 617
Euler differential equation 517–518
Euler factor 549
Euler-Lagrange equation) 518
expansion coefficients 162
explicit methods 549

F
faltung, see convolution
far field 460, 461, 464
Farad 39, 84
Faraday’s law of induction 30, 90, 343,

346
Fermions 570
ferromagnetism 294, 299
field diffusion 357–358, 364, 369
field intensity 41
field lines 21–22, 28, 31
field of a plane conducting loop 284
field tensor 637
fields 1
finite differences 516, 535, 536, 537,

541–548, 556, 565, 566, 568
finite elements 519, 533, 534, 537, 549–

556
Fitzgerald vector 449
five-point formula 542, 544, 548, 565
flux function. 207
flux pipe 22
force

-electric 3
-electromotive 234
-magnetic 23

force density 291
force pair 292
form functions 534, 534–559
formal analogy between D and g 242



Index G 653

four-dimensional 619, 629, 630, 637,
638, 645

four-dimensional inhomogeneous wave
equation 631

Fourier integral 153, 155, 157, 412
-exponential 158
-inverse distance, cartesian coordinates

155
Fourier series 155
Fourier-Bessel series 177, 178, 181, 390,

393, 394, 398, 496
Fourier-Bessel transform 181
Fourier-Mellin theorem 362
Four-tensors 629
Four-vector 629
frame antenna 463
Fredholm integral equation 509

-1st kind 508
-2nd kind 509

free charges 87
free space wave length 477, 488
frequency 412
Fresnel’s equations 434, 436
function

-complex 211
-even 158
-even or symmetric 156
-harmonic 207, 216
-odd or anti-symmetric 156

function theory 363
functional 517, 524, 604
functions

-generalized 132
fundamental solution 507, 512, 559

G
Galerkin method 529, 533–536, 551
Galilean Transformation 616, 622
Galilei invariant 616
Galilei Transformation 618
gauge 257
gauge invariant 257
gauge transformation 257
Gauss 39
Gauss elimination 543, 548
Gauss function 133
Gauss’ Integral Theorem 10
Gauss’ integral theorem 11, 128

Gaussian curve 365
Gauss-Seidel method 543, 548
general relativity theory 617
generalized functions 132
generating function 538
gradient 20

-two-dimensional 91
gradient operator 43
Green’s first identity 129
Green’s formula 137
Green’s function 149–152, 185, 195,

197, 366, 566
-Dirichlet’s problem 150
-first, second kind 151
-Neumann’s problem 151

Green’s integral theorem 128–130
Green’s second identity 129
Green’s theorem 129
Green’s theorem for the plane 129, 496
group velocity 413–414, 421, 477, 488

H
H wave 419
half-inverse 531
Hamilton’s differential equations 594
Hamiltonian 594
Hankel transformation 181
Harms-Goubau conductor 486
heat equation 354
heat loss 110
Heaviside’s step function 134, 501
Heisenberg’s uncertainty relation 585
Helmholtz equation 469, 475, 495, 518,

523
Helmholtz equations 468
Helmholtz theorem 139, 234, 608–615
Henry 39
Hering’s experiment 349, 352
Hertz dipole 454, 607
Hertz Vector

-electric 447
Hertz vector 492

-electric 455, 469
-magnetic 449, 470

hollow sphere in uniform magnetic field
312

homogeneous wave 427
hysteresis loop 299–301



654 Index I

I
identity operator 160
identity tensor 160
image charge 56, 74–80, 95, 97, 138,

200, 205, 227
image charge method 537, 562–563
image currents 314
image field 374
image source 243
implicit methods 549
improper functions 132
inductance coefficients 336
induction

-magnetic 29
inertial systems 616, 627
infinite elements 556
influence charge 73, 205
influence coefficients 202, 204
inhomogeneous wave 428, 440, 441
inhomogeneous wave equation 444, 573
initial curve 299
initial value problems 357, 360, 361
inner conductor 492
insulator 72
insulators 23
integral

-total elliptic of the 1st kind 174, 277
-total elliptic of the 2nd kind 277

integral operator 163
integral transform 163, 165, 366, 371
integration by parts 130
Interference of electron beams 599
interference pattern 599
invariance of Maxwell’s equations in

dual transformations 588
invariant 588
inverse formulation 559
ionosphere 583
irreversible process 354
irrotational 19, 100
iteration method 543, 548

J
Jacobi method 548
Joule 37, 39
Jupiter 583

K
Kelvin function

-"ber" and "bei" 400
kernel of the integral transform 164
kilogram 35
Kirchhoff’s theorem 137, 506, 510, 515,

562
-one-dimensional 510

Kirchhoff’s theorem on electric circuits
theory 233

Klein-Gordon equation 570
Kronecker symbol 144

L
l’Hospital’s rule 364
Lagrange multiplier 519, 521
Lagrange parameter, see Lagrange multi-

plier
Laplace operator 41, 136, 257, 258, 545
Laplace transform 357
Laplace’s equation 41, 518
Laplacian, see Laplace operator
Laplacie Operator 117, 122
Laurent series 363
law of refraction 103, 241, 242, 432

-for g and E lines 238
least squares 529, 530, 532, 536
Legendre polynomials 190, 611
light conductor 486
light guide 486
light quanta 569, 575, 582
lightly populated matrices 543
line dipole 69, 225
linear polarization 416
linearity 32
linearly polarized 411
local grid refinement 548
local interaction 594
location coordinates, canonical 594
logarithmic potential 50
longitudinal waves 407
Lorentz contraction 28
Lorentz force 29, 256, 344, 345
Lorentz gauge 257, 443
Lorentz transformation 618
Lorentz-contraction 623
LR decomposition 548



Index M 655

M
magnet 85
magnetic charge 29, 35, 585–593
magnetic charges 23
magnetic circuit 303
magnetic conductivity 304
magnetic dipole

-oscillating 463
magnetic dipole layer 282
magnetic dipole moment 279, 290, 293
magnetic dipoles 286
magnetic field 23
magnetic field strength 29
magnetic field strength definition 295
magnetic flux 30, 262, 325, 341, 343
magnetic flux density 29
magnetic needle 23
magnetic resistance 304
magnetic surface 326
magnetization 286
magnetization current 315–320
magnetization current density 288
magnetostatics 34, 256
mapping 213

-conformal 210, 215
-conformal mapping 215, 216, 219,

220, 227, 231, 242, 247, 251, 265,
269, 322

material equation 32
materials

-hard 301
-soft 301

Maxwell’s equations 1
Maxwell’s equations - supplement 32
mean value theorems of potential theory

515, 516, 542
medium

-infinitely conductive 320
-magnetizable 295

metallic cylinder 80
metallic sphere 77
meter 35
method

-of complex analysis 117
-of function theory 209
-of image charges 138
-of separation of variables 117
-of virtual displacement 115

method of images 74
metric tensor 121
Michelson experiment 617
Minkowski space 620, 629
mirror charge, see also image charge
m-mesons 624
moment, magnetic 286
momentum

-operator of 569
Momentum Method 536
momentum method 528, 532
monopole 198

-magnetic 585, 587, 593
Monte-Carlo method 537, 539, 563–568
multi-conductor systems 200
multiply connected regions 263
multipole expansion 198

N
Nabla 12, 17
natural boundary conditions 518, 519
natural phenomenon 35
net forces 23
Neumann boundary value problem 470
Neumann function 166
Neumann’s boundary value problem 128
Newton 37
nine-point formula 544, 547
nodal points 550–556, 561
nodal points of a standing wave 417
nodes of a standing wave 417
noise 355
normal component of B 306
normal component of D 65, 87, 153
normal components of D 242

O
octopole moment 198
Ohm 39, 235
Ohm’s law 32, 110, 232
orthogonal grid 208
orthogonal trajectory 208
orthogonal transformation 618
orthogonality relation 144, 146, 148,

153, 156, 157–159, 161, 173, 182, 191
overdetermined collocation 529–532,

536, 562



656 Index P

P
paramagnetic 294
paramagnetism 294
parameter representation 118
partial differential equations

-elliptic 355
-hyperbolic 355
-parabolic 355

p-domain 362, 370, 382, 391, 399, 503
penetration depth 378, 402
penetration depths 401
period 412
permanent magnet 297
permeability

-absolute 296
-relative 296

permeability of vacuum 29
permittivity 4, 86
perpetuum mobile 13
phase constant 427
phase velocity 359, 378, 412–419, 430,

476, 488, 580
photon 10
photon rest mass 572
plane case 71
plane electrostatic problems 206
plane of incidence 92, 432, 433
plane waves 407–439
plate, planar, in magnetic field 307
plate, plane, in electric field 85
p-Mesons 571
point charge 8, 44, 93, 134, 154, 174, 175
Poisson’s equation 41, 49, 135, 149, 151,

518, 520–529
-magnetic 297

polar plot 461
polarization 60, 84, 97

-circular 416
-elliptical 415
-linear 415
-magnetic 290
-parallel 433
-permanent 87
-perpendicular 433

polarization angle. 437
polarization current 106
polarization current density 107
polarization potentials. 451

polarized - permanently 85
pole of order m 363
pole of order m, 364
potential 19–21, 41–44, 136

-discontinuity 71
-scalar magnetic 263

potential coefficients 202
potential difference 204
potential equation 356
potential function 19, 40
potential theory 128
Poynting vector 423, 460, 461, 464, 573
Poynting vector. 108
Poynting’s theorem 573
principle for conservation of electric

charges 27, 107, 232, 262, 586
Principle of charge conservation 27, 33
Proca equations 572, 582
Proca-equations 572
process

-irreversible 355
-stochastic 358

projection operator 160
propagation vector 414
pseudo-Euclidean four-dimensional

space-time 620

Q
quadrupole 198
quantization of the angular momentum

586
Quantum electrodynamics 1
Quantum Mechanics 569
quark 27
quasi stationary approximation 343

R
radiation power 461–463
radiation resistance 462, 465
rank reduction 630
Rayleigh-Ritz method 519
reciprocity theorem 204
reference function 517
reference point 41
reflectance 437
refraction

-at a boundary 92
-due to free surface charges 92



Index S 657

-for magnetic field lines 306
-of electric force lines 90–92
-of waves 439

relative dielectric constant, 86
relativistic Doppler effect 626
relativistic particle 581
relativistically invariant 639
Relativity, Theory of 1
relaxation method 548
remanence 299
remanent field 299
residual 528
resistance 39, 110, 234, 251

-magnetic 304
resonant cavity 481
resonant frequency 483
rest mass of photons 10, 569–584
retarded solution 446
Riemann surface 221
Ritz method 519
Rotation, see curl
rotation, see curl

S
saturation 299
scale factor 120
Schrödinger’s equation 569, 594–599

-relativistic 570
Schumann-resonance 583
Schwarz-Christoffel mapping 231
Second 35
see also energy theorem
self-inductance coefficients 337
semi-implicit methods 549
separability 142

-R-separability 142
separating surface 264, 283
Separation 165
separation 139, 188, 247, 324, 485
separation constant 165
separatrix 53
series expansion for the inverse distance

-cylindrical coordinates 174
-in cylindrical coordinates 183–185

series expansion of the inverse distance
-in spherical coordinates 611

seven point formula 542
shielding from fields 84, 312

shifting theorem 361
signal speed 403, 421
similarity laws 360
similarity theorems 357, 373
similarity transformation 360
sin integral see sine Fourier integral
sine Fourier integral 158
singular point 218, 507
singularity, essential 363
skin depth 359
skin effect 320, 343, 357, 359, 374, 389,

399, 402, 404
smooth surface 507
Snell’s law

- 432
solid angle 64, 283
solid angle element 63
Sommerfeld conductor 486
source 9, 19, 21, 608, 609

-point-like 243
-strength of 9

source free 26, 102
special relativity theory 617
spectrum

-continuous 161
-discrete 161

speed of light 617
sphere

-conductive in uniform field 311
-dielectric 93, 97
-ferromagnetic in vacuum 310
-in a uniform electric field 193
-uniformly polarized 97, 311

spherical capacitor 82
spherical harmonics 190–192
spin 29, 286, 294, 570
stagnation line 78, 79, 270, 474
stagnation point 52–56, 78–79, 271
standing wave 416
steady state 377, 389, 398, 400
Stoke’s Integral Theorem 15
super potentials 449
superposition principle 7, 32
surface charge 137, 171, 181, 187, 562
surface charge density 43

-magnetic 289
surface current 288, 297, 318, 321, 326,

330, 335



658 Index T

surface current density 288, 305, 317
susceptibility

-magnetic 294
susceptibility -electric 85
symmetry

-of Maxwell’s equations 32
system of units 35

T
tangent vector 119–127
tangential components

-k 432
-of E 96, 193, 242
-of H 305

TE waves 419, 468, 475, 479, 481, 482,
489, 491, 496

telegrapher's equations 472
telegrapher’s equations 493
TEM waves 468
tensor 88, 298, 637, 638
Tesla 39
thermodynamics

-first law of 354
-second law of 355

thirteen-point formula 544
time dilatation 624
time reversal 355
time shifting theorem 361
TM wave 420
TM waves 422, 468, 475–476, 482, 487,

491, 495
torque 23, 85, 292–294
total reflection 439
total time derivative 347
transformation

-dual 587–593
-orthogonal 618

transmission theory 472, 493
transmittance 437
transverse electric wave 419
transverse magnetic wave 420
Trefftz method 559
triangular coordinates 552–553
triangular matrices 548
twin paradox 624

U
uncertainty relation 585

unipolar machine 349
uniqueness prove 145

V
variational calculation 520
variational calculus 517
variational integral 519, 520, 523, 551
variational integrals 559
variational method 534
variational problem 517, 518–533
vector diffusion equation 354
vector potential 256, 257, 347, 447, 598

-electric 448
vibrating string 485
virtual displacement 114, 115
voltage source 234
vortices 608, 608–615

-see also circulation

W
Watt 37
wave

-circularly polarized 416
-elliptically polarized 415
-homogeneous 427
-inhomogeneous 428, 440
-linearly polarized 416
-parallel polarized 437
-perpendicularly polarized 437
-plane 407–439
-plane harmonic 414
-standing 416
-transverse electric 419
-transverse magnetic 420

wave equation 355, 356, 406, 429
-inhomogeneous 444, 573
-inhomogeneous, 4-dimensional 631

wave guide
-circular cylindrical 485
-cylindrical 466
-rectangular 475
-rectilinear 524

wave length 412
wave number 412
wave number vector 414
wave packet 411, 413
wave train 411
wave vector 414



Index Y 659

waves 1
-electromagnetic 405

weak formulation 534, 559
Weber 39
weight function (orthogonality) 178
weight functions (for weighted residuals

529
weighted residuals 528–537, 551, 559,

562
work 12, 13, 19, 20, 113, 301

Y
Yukawa field 571
Yukawa potential 570, 571, 574

Z
zeros

-of Bessel’s function 177–180, 392–
397, 488

-of Bessel’s function derivative 489
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